
D
ow

nl
oa

de
d 

B
y:

 [S
ta

nf
or

d 
U

ni
ve

rs
ity

] A
t: 

21
:2

6 
8 

M
ar

ch
 2

00
8 

INTERNATIONAL ECONOMIC JOURNAL 
Volume 14, Number 2, Summer 2000 

AN EMPIRICAL ANALYSIS OF THE IMPACT OF HEDGE 

CONTRACTS ON BIDDING BEHAVIOR IN A COMPETITIVE 

ELECTRICITY MARKET* 

Stan ford University 

A major concern in the design of wholesale electricity markets is the potential for 
the exercise of market power by generating unit owners. To better understand the 
determinants of generating unit owner market power and how it is exercised, this paper 
derives a model of bidding behavior in a competitive electricity market which 
incorporates various sources of uncertainty and the impact of the electricity generator's 
position in the financial hedge contract market on its expected profit-maximizing 
bidding behavior. The model is first used to characterize the profit-maximizing market 
price that a generator would like set by its bidding strategy for several hedge contract 
and spot sales combinations. This model is applied to bid and contract data obtained 
from the first three months of operation of the National Electricity Market (NEM1) in 
Australia. This analysis illustrates the sensitivity of expected profit-maximizing 
bidding strategies to the amount of financial hedge contracts held by the generating unit 
owner. It also provides strong evidence for the effectiveness of financial hedge 
contracts as a means to mitigate market power during the initial stages of operation of a 
wholesale electricitj market. [L 941 

1. INTRODUCTION 

This paper derives a model of bidding behavior in a competitive electricity 
market which incorporates the impact of the electricity generator's position in the 
hedge contract market on its expected profit-maximizing bidding behavior.' The 

'I would like to thank Jun Ishii and Marshall Yan for outstanding research assistance. 
Partial financial supper! for this research was provided by the National Science Foundation. I 
would also like to thank Severin Borenstein, Jim Bushnell, Paul Joskow, and Catherine 
Wolfram for very helpfill comments on previous drafts of this paper. I am also grateful for the 
comments of Kuen-Kwan Ryu and Won-Cheol Yun, my discussants at the 1999 Annual 
International Economics Journal Conference. 

'Hedge contracts are usually signed between a generating company and an electricity retailer. 
A hedge contract guarantees the price at which a fixed quantity of electricity will be sold. 
They are purely financial obligations. If the market price exceeds the contract price, then the 
contract seller pays to the buyer the difference between these two prices times the contract 
quantity. If the markel. price is less than the contract price the buyer pays the absolute value of 
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2 FRANK A. WOLAK 1 

model is first used to characterize the profit-maximizing market price that a 
generator would like set by its bidding strategy for several hedge contract and spot 
sales combinations. This model is applied to bid and contract data obtained from 
the first three months of operation of the National Electricity Market (NEM1) in 
Australia to answer several questions about the bidding behavior of a major 
participant in this market. 

Questions addressed by this analysis include: How close does this generator's 
current bidding strategy come to earning the highest profits possible given its 
hedge contract position and the bidding strategies of the remaining market 
participants? Are there changes in this generator's hedge contract position that 
could increase its expected profits, assuming the bidding strategies of the 
remaining participants do not change? If more profitable hedge contract position 
exists, why haven't generators competing in this market moved to this more 
profitable level of contracting? The answers to these questions will shed light on 
the structure of optimal bidding and hedge contracting strategies in a competitive 
electricity market. 

A major concern of regulators and governments re-structuring their 
electricity supply industries and forming competitive markets for electricity 
generation is the exercise of market power. In this context, market power is 
the ability of a generating company to raise the market price by its bidding 
behavior and to profit from this price increase. A first step in determining 
whether a generator possesses market power is an accurate model of the optimal 
bidding behavior for a generator competing in this market. Using such a model, 
I show that a firm's hedge contract position can exert a dramatic effect on its 
optimal bidding strategy, and its short-term desire to raise the market price. In 
fact, for sufficiently high hedge contract levels, a generator should attempt to 
reduce market prices below its own marginal cost of production by its optimal 
short-term bidding strategy. 

These results also have implications for monitoring the exercise of market 
power. Even given knowledge of a firm's bidding behavior in a competitive 
electricity market, without knowledge of a generator's hedge contract position, it 
is difficult, if not impossible, to determine if the firm is able to exercise market 
power. For a specific bid hnction, there is often a hedge contract position that 
can rationalize that bid function as expected profit-maximizing. This result 
implies that the strategic value of actual bid functions to other competitors is 
significantly reduced because a key ingredient necessary to determine a firm's 
profits from a given bidding strategy is unknown. Unfortunately, the monitoring 
value of actual bid functions to a regulator is also significantly reduced for the 
same reason. 

Our empirical analysis of the bidding behavior of one of the major participants 
in NEMl helps to explain several features of the pattern of prices in this market. 

this same price difference times the contract quantity to the seller. 
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IMPACT OF HEDGE CONTRACTS 3 

Specifically, since this market was formed, prices have fallen precipitously. 
Before re-structuring the average price of a megawatt-hour (MWH) of electricity 
was roughly 35 Australian dollars ($AU). With the formation of separate 1 markets in the states of New South Wales and Victoria, prices in each market 
settled at an average value of roughly 25 $AU/MWH. With the interconnection 
of these two markets and the formation of NEMl in May of 1997, average prices 
in the integrated market fell even further to around 15 $AU/MWH. My analysis 
finds that despite the fact that the marginal cost of generation for many of the large 
fossil fuel generating facilities is roughly 15 $AU/MWH, because of the large 
quantity of hedge contracts held by the major firms competing in this market, the 
short-run (conditional on their current hedge contract prices and quantities) profit- 
maximizing market price for these generators is very close to the actual market 
price set. Using my model of optimal bidding behavior, I then provide a 
rationale for why generators competing in this market sold hedge contracts in such 
large quantities that these low-prices became short-run optimal. I then present 
two counterfactual scenarios which show that reductions in the generator's 
contract position can significantly increase both the mean and standard deviation 
of the variable profits it earns from a profit-maximizing bidding strategy based a 
reduced quantity of hedge contracts. 

The remainder of the paper proceeds as follows. The next section presents 
my model of optimal bidding behavior with hedge contracts for a generic 
competitive electricity market. In this section, I define a best-response bidding 
strategy as the set of' daily bid prices and quantities that maximize expected daily 

1 variable profits given the strategies of other firms participating in the market. I 
also define the best-response price as the market-clearing price that maximizes the 
realized profits of the firm given the bidding strategies of its competitors, the 
realized value of the stochastic shock to the price-setting process, and its current 
hedge contract position. Section 3 then presents a graphical analysis of several 
scenarios which illustrate the relationship between the best-response price for a 
firm and the quantity of hedge contracts sold by the firm relative to its sales into 
the electricity spot market. Given this model of bidding behavior, Section 4 
provides background on the market structure, market rules and regulatory 
oversight in NEMl and describes the data necessary to implement this model 
empirically. Section 5 provides evidence for the validity of my model of the 
price-setting process in NEM1. Section 6 uses the results of Section 5 to derive 
best-response prices for a major firm participating in this market. Section 7 uses 
the results of the previous sections to explain the current pattern of prices in this 
market. This section also discusses the rationale for the high levels of hedge 
contracts in this market. The final section describes my related research in 
progress and the implication of these results for the design of competitive 
electricity markets. 
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4 FRANK A. WOLAK 1 

2. A MODEL OF BEST-RESPONSE BIDDING 
AND BEST-RESPONSE PRICING 

A competitive electricity market is an extremely complicated non-cooperative 
game with a very high-dimensional strategy space. A firm owning a single 
generating set competing in a market with half-hourly prices must, at a minimum, 
decide how to set the daily price for the unit and the quantity bid for 48 half-hours 
during the day.' In all existing electricity markets firms have much more 
flexibility in how they bid their generating facilities. For instance, in NEMl 
firms are allowed to bid daily prices and half-hourly quantities for 10 bid 
increments per generating set (genset). For a single genset, this amounts to a 
490-dimensional strategy space (10 prices and 480 half-hourly quantities). Bid 
prices can range from -9999.99 $AU to 5000.00 $AU, which is the maximum 
possible market price. Each of the quantity increments must be greater than or 
equal to zero and their sum is less than or equal to the capacity of the generating 
set. Most of the participants in this market own multiple gensets, so the 
dimension of the strategy space for these firms is even larger. 

A generator's optimal bidding strategy will depend on the bidding strategies of 
all of its competitors. I assume that a firm selects its bidding strategy conditional 
on the strategies selected by its competitors to maximize its expected profits for 
the day. In the terminology of game theory, each generator would like to play its 
best response to its competitors' strategies for that day, given its costs of 
generation and hedge contract portfolio. If the strategies played by all 
participants satisfy this condition, then each strategy is that firm's Nash 
Equilibrium strategy. 

Let S(i) represent the daily bidding strategy of firm i, in the present context the 
set of 10 daily prices and half-hourly capacity bids for each generation set that 
firm i owns. Let q[(S(I), S(2), ..., S(K))] equal the expected daily profit of firm i 
when there are K firms competing in the market and they bid according to the 
strategies S(I), S(2), ..., S(K), respectively. The firm maximizes expected daily 
profits because there is uncertainty in the price-setting process that is unknown at 
the time each firm selects its bidding strategy for the following day. The 
expected profit function specifies the expected revenue received by firm i for the 
day when each firm's bids are described by the strategies S(l), S(2), ..., S(K), 
minus the expected costs of generation, taking into account any expected 
revenues-positive or negative-from hedge contracts. 

In order compute the expected profit function associated with any strategy the 
firm might play, I must have an accurate model of the process that translates the 
bids generators submit into the actual market prices they are paid for the electricity 

2~lectricity generating plants are usually divided into multiple generating sets or units. For 
example a 2 gigawatt (GW) plant will usually be divided into four 500 megawatt (MW) 
generating sets. 
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IMPACT OF HEDGE CONTRACTS 5 

for all possible realizations of uncertainty about the price-setting process. The 
construction of a model of the price-setting process in NEMl that is able to 
replicate actual market prices with reasonable accuracy is a necessary first step to 
compute best-response bidding strategies or perform any comparative analysis of 
the expected profitability of alternative bidding strategies. Without the ability to 
replicate actual market prices using actual generator bid functions, it is impossible 
to compare with any degree of confidence market outcomes under current or 
historical bidding strategies with what they would be under any alternative bidding 
strategies. A major part of the empirical half of the paper is devoted to 
demonstrating that my model of the price-setting process accurately reflects the 
actual price-setting process. 

Given an expression for %[(S(l), S(2), ..., S(K))], firm i's expected profit 
function for all possible strategies played by all firms, a strategy which maximize 
firm i's expected profits given the strategies played by its competitors, or best- 
response strategies, can be represented as the solution to the following 
optimization problem: 

max n, (S(i), S(-i)) 
S ( i )  

(1) 

where S(-i) = (S(l), S(2), ..., S(i-1), S(i+l), ..., S(K)) is the vector of strategies of 
all other firms. Computing firm i's best-response strategy involves maximizing 
q[S(i), S(-i)] with respect to all of the daily prices and half-hourly availability 
declarations for all generating units owned by firm i. 

In NEM1, each day d is divided into the half-hour load periods i beginning 
with 4:00 am to 4:30 am and ending with 3:30 am to 4:00 am the following day. 
Let Firm A denote the generator whose bidding strategy is being computed. 
Define 

Q,, : Total market demand in load period i of day d 
SO,,('): Amount of capacity bid by all other firms besides Firm A into the market 

in load period i of day d as a function of market price p 
DR,Jp) = Q, - SO,&): Residual demand faced by Firm A in load period i of day 

d, specifying the demand faced by Firm A as a function of the market price p 
QC,d : Contract quantity for load period i of day d for Firm A 
PC,, : Quantity-weighted average (over all hedge contracts signed for that load 

period and day) contract price for load period i of day d for Firm A. 
n,&) : Variable profits to Firm A at price p, in load period i of day d 
MC : Marginal cost of producing a MWH by Firm A 
SA,,(p) : Bid function of Firm A for load period i of day d giving the amount it is 

willing to supply as a function of the price p 
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6 FRANK A. WOLAK 1 

The market clearing price p is determined by solving for the smallest price 
such that the equation SA,,(p) = DRi,(p) holds. The magnitudes QCid and PC,, are 
usually set far in advance of the actual day-ahead bidding process. Generators 
sign hedge contracts with electricity suppliers or large consumers for a pattern of 
prices throughout the day, week, or month, for an entire fiscal year. There is some 
short-term activity in the hedge contract market for electricity purchasers requiring 
price certainty for a larger or smaller than planned quantity of electricity a some 
point during the year. 

In terms of the above notation, I can define the variable profits3 (profits 
excluding fixed costs) to Firm A for load period i during the day d at price p as: 

The first term is the variable profits from selling electricity in the spot market. 
The second term, if p > PC,,, is the total payments made to purchasers of hedge 
contracts if the pool price, p, exceeds the contract price during that half-hour. If 
p < PC, ,  the second term is the total payments made by purchasers of hedge 
contracts to Firm A. Once the market-clearing price is determined for the period, 
equation (2) can be used to compute the profits for load period i in day d. 

Writing Firm A's profits in this manner shows that unless its bidding strategy 
can effect the market-clearing price p, Firm A's profits are unaffected by its 
bidding strategy for a given hedge contract quantity and price. The goal of Firm 
A's best-response bidding strategy will therefore be to find the daily bid function 
which results in market-clearing prices that make the expectation of the sum in 
equation (2) over all load periods in the day as large as possible. 

To see this result more clearly, make the following extensions to the basic 
model. Suppose that there are stochastic demand shocks to the price-setting 
process each period, and that Firm A knows the distribution of these shocks. 
This could be due to the fact that it does not exactly know how its competitors will 
bid-SO(p) has a stochastic element to it-or it does not know the market demand 
used in the price-setting process when it submits its bids-Q is known up to an 
additive error. Let E, equal this shock to Firm A's residual demand fbnction in 
load period i (i = 1, ..., 48). Re-write Firm A's residual demand in load period i 
accounting for this demand shock as DR,Gr,, E,). Define 

3 ~ o r  the remainder of the paper, I use variable profits and profits interchangeably with the 
understanding that I am always referring to variable profits. 
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IMPACT OF HEDGE CONTRACTS 7 

as the vector of daily bid prices and quantities submitted by Firm A. The rules of 
the NEMl market require that a single price, p ,  is set for each of the k=I,  ..., JxK bid 
increments owned by firm A for the entire day. There are K increments for each of 
the J gensets owned by firm A. However, the quantity, qIk, made available to 
produce electricity in load period i from each of the k = l  ,..., J x K  bid increments 
can vary across the 48 load periods throughout the day. In NEM1, the value of K 
is 10, so the dimension of O is 10J + 48x IOJ. Firm A owns a number of gensets 
so the dimension of O is more than several thousand. Let SA,(p, O )  equal Firm 
A's bid function in load period i as parameterized by O. Note that by the rules of 
the market, bid increments are dispatched based on the order of their bid prices, 
from lowest to highest. This means that SA,(p, O )  must be non-decreasing inp. 

Let p , ( ~ , ,  O) ,  denote the market-clearing price for load period i given the 
residual demand shock realization, E,, and daily bid vector O. It is defined as the 

I 
solution in p to the equation DR,@, E,) = SA,@, O).  Let A&) denote the 
probability density function of 6 = ( E ~ ,  E,, ..., E,,)'. Firm A's best-reply bidding 
strategy is the solution to the following optimization problem: 

" " 48 

maxo I.. . I [DR, (pi (e, , @))(pi (ei , @))-MC)-(pi (e,. @)-PCi )PC V(e )de ,  ...de48 
0 0 i=l 

(3) 
subject to b,  2 RO 2 b,. 

Define O* as the expected profit-maximizing value of O.  Besides the extremely 
large dimension of O, there are several other reasons to expect this problem to be 
extremely difficult to solve. First, in general, the residual demand function faced 
by Firm A is a non-decreasing, discontinuous step function, because the aggregate 
supply curve of all participants besides Firm A is a non-decreasing step function. 
Second, to compute the value of the objective function requires integrating with 
respect to a 48-dimensional random vector E. Most important, the dimension of 
O for Firm A is greater than 2,000. A 2,000 dimensional nonlinear program 
exceeds the memory and computational limits of most large workstations. 
Finally, several sets of linear inequality constraints represented by the matrix R 
and vectors of upper and lower bounds b,  and b, must be imposed on the elements 
of O. Specifically, none of the q,, can be negative and the sum of the q,, relevant 
to a given genset cannot be greater than the capacity of the genset. The prices for 
each bid increment cannot be smaller than -9999.99 $AU, or larger than 5,000.00 
$AU. Although none of these problems are insurmountable, clearly this is an 
extremely complicated nonlinear programming problem that will tax the capability 
of even the most powerful workstation. 
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8 FRANK A. WOLAK 

At this point it is useful to compare the optimal bidding strategy problem given 
in (3) to the problem of computing an optimal supply function with demand 
uncertainty discussed in Klemperer and Meyer (1989) and applied to the 
electricity supply industry in England and Wales by Green and Newbery (1992). 
Re-write equation (2) with the residual demand function for load period i that 
includes the shock for period i as: 

Solving for the value of p that maximizes (4) yields pi*(&,), which is the profit- 
maximizing market clearing price given that Firm A's competitors bid to yield the 
residual demand curve, DRidO), E,,), with demand shock realization, 4, for the 
hedge contract position, QC,, and PC,. Because this price maximizes the expost 
realized profits of Firm A, for the remainder of the paper, I will refer to it as the 
best-response price for the residual demand curve DRid@, E~,) with demand shock 
realization E, for the hedge contract position QC, and PC,. Substituting this value 
of p into the residual demand curve yields DRihi*(ri), E,,). This price and 
quantity combination yields Firm A the maximum profit that it can earn given the 
bidding behavior of its competitors and the demand shock realization, E,. 

Klemperer and Meyer (1989) impose suff~cient restrictions on the underlying 
economic environment-the demand function, cost functions and distribution of 
demand shocks-so that by tracing out the pricelquantity pair (pi*(6), DRid 0),*(~,) ,  
r,,)) for all values of E, yields a strictly increasing supply curve, SA,0)), for Firm A 
for load period i. For each demand shock realization this supply curve yields the 
best-response price for Firm A given the bidding strategies of Firm A's competitors 
and its hedge contract position. Green (1999) solves this supply function 
equilibrium problem with contract cover for the case of linear supply functions. 

Because the market rules and market structure in NEMl constrain the feasible 
set of price and quantity pairs that Firm A can bid in a given load period, it will be 
unable to achievep,*(ri) for all realizations of E, using its allowed bidding strategy. 
As noted above, the allowed bidding strategy constrains Firm A to bid ten bid 
increments per genset, but more importantly, the prices of these ten bid increments 
must be the same for all 48 load periods throughout the day. This can severely 
limit the ability of Firm A to achieve pi*(&,). Determining the types of 
restrictions to put on the set feasible bidding strategies to yield the lowest possible 
market prices from firms competing using strategies from these restricted strategy 
sets is a important area for future research. 

In the empirical half of the paper, I examine the extent to which Firm A's 
current bidding strategy falls short of the obtaining best-response pricing profits. 
I find that the variable profits from best-response pricing-setting p,*(q) for 
demand shock realization E, assuming current hedge contract prices and 
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i IMPACT OF HEDGE CONTRACTS 9 

quantities-for Firm A range from 11 to 17 percent higher than the variable profits 
from Firm A'S current bidding strategies, depending on the marginal cost of 
generation assumed. How much of this profit difference is due to deviations 
from best-response bidding by Firm A and how much is due to the constraints on 
Firm A's best-response bid functions because on the market rules governing the 
price-setting process, is a topic I am currently investigating. 

Best-response prices must yield the highest expected profits, followed by best- 
response bidding, because the former is based on the realization of r, as shown in 
(4), whereas the latter depends on the distribution of E as shown in (3). The 
generator's actual expected profits can only be less than or equal to the best- 
response bidding expected profits. Recall that by, definition, the best-response 
price, P,*(E,), yields the maximum profits possible given the bidding strategies of 
Firm A's competitors and the value of the residual demand shock, 6,. The best- 
response bidding strategy which solves (3) for the expected profit-maximizing 
vector of allowable daily bid prices and quantities, 0*, yields the highest level of 
expected profits for Firm A within the set of allowable bidding strategies. 
Therefore, by definition, this bidding strategy should lead to higher average profits 
than Firm A's current bidding strategy for the same set of competitors' bids and 
own hedge contract positions. The extent to which profits from a best-response 
bidding strategy lie below the maximum possible obtainable from best-response 
prices will not be addressed here. However, given the high-dimensional strategy 
space available to Firm A, it appears that a non-negligible portion of the difference 
between the best-response pricing variable profits and variable profits under Firm 
A's current bidding strategy can be attributed to the use of bidding strategies that 
are not best-response in the sense of not solving optimization problem (3). 

The empirical half of the paper also demonstrates, using my model of the 
price-setting process and bids by other generators besides Firm A, that significant 
increases in Firm A's expected variable profits are possible if it unilaterally 
reduces its hedge contract position and manages to set best-response prices for its 
new hedge contract position. However, the downside of this reduction in 
contract quantity is a significantly more volatility across days in market prices and 
variable profits. In order to provide economic intuition for this and other results 
presented later, I now turn to a graphical analysis of the impact of a firm's hedge 
contract position on its best-response prices. 

3.  AN ECONOMIC ANALYSIS OF THE IMPACT OF CONTRACT 
QUANTITY ON BEST-RESPONSE PRICES 

Before proceeding with this analysis, note that I can re-write equation (4), the 
realized period-level profits of Firm A, as: 
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10 FRANK A. WOLAK 

Note that if QC is set equal to zero, then dp) = DR@)(p - MC). For the 
remainder of the paper I will omit the subscripts on variables because my analysis 
is at the load period-level unless explicitly noted. For notational ease, I also omit 
E, from the residual demand function despite the fact that I deal only with the 
realized residual demand curve (including the realization of E,) faced by Firm A 
and best-response prices for the remainder of the paper. 

Re-writing equation (3) in this manner isolates the impact of Firm A's hedge 
contract position on its optimal bidding behavior. Because contract prices and 
quantities, P C  and QC, are set well in advance of the day-ahead bidding process 
and its marginal cost, MC, is known, for the purposes of Firm A's day-ahead 
bidding strategy, the second term in (5) is a fixed cost. Consequently, because its 
day-ahead bidding strategy has no impact on the second term of ( 5 ) ,  Firm A's goal 
in setting its bid prices and quantities is to maximize the first term in (5). Define 
DRc@) = DR@) - Qc as the net of contract cover residual demand faced by Firm A, 
recognizing that it can be both positive and negative. This means that Firm A 
can sell both more or less than its contract cover. The portion of its profits that 
are affected by its day-ahead bidding strategy can be written as n*@) = DRc@)@ - 
MC). If it has nonzero contract cover, Firm A wishes to achieve a value o f p  that 
maximizes z*@) by its bidding strategy. 

To allow a graphical analysis, I assume Firm A faces a linear residual demand 
function for its output, so that DR@) takes the form given in Figure The line 
shifted to left parallel to DR@) is Firm A's residual demand less its contract cover 
Q,. Associated with the both DR@) and DRc@) = DR@) - Qc are marginal 
revenue functions, giving the increase in revenue to Firm A from selling one more 
unit of output. For the case of no contract cover this line is labeled MRNc. The 
line labeled MR, is the marginal revenue for contract cover level Qc. Note that 
MRc is a leftward shift of From standard microeconomic theory, the protit 
maximizing level of output for Firm A, given that it faces either residual demand 
curve and associated marginal revenue curve in Figure 1, is to produce at the point 
where that marginal revenue equals its marginal cost. 

The intersection of Firm A's marginal cost with each marginal revenue 
function gives the best-response quantities with and without contract cover. Let 
S,, denote the best-response quantity produced by Firm A with no contract cover. 
This is the quantity at the intersection of MR, with MC. Let Sc - Q, denote the 
value of net output (output less contract quantity) at the point where MRc 
intersects MC. The two best-response prices are given on the vertical axis. 
They are the prices that solve the equation DR@) = S, for I = C and NC. The 

4The mathematics underlying my analysis is unchanged by more complicated residual 
demand functions allowed by the rules of the market. Recall that DR(p) = Q - SO@). The 
rules of market require SO@) to be an increasing function and the structure of available 
generating technologies implies that SO@) increases an increasing rate, which implies DR(p) 
decreases at a decreasing rate. 
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IMPACT OF HEDGE CONTRACTS 11 

best-response price with no contract cover is P,, The best-response price with 
contract cover is P,. Note that the best-response price with contract cover is 
below the best-response price without contract cover. This is a general 
phenomenon. In this case, Firm A is producing more electricity than its 
contract quantity so that DRc(Pc) = DR(Pc) - Qc = S,  - Qc > 0. Because 
Firm A has a net long position in electricity, its profit maximizing price given 
the realization of its residual demand curve is greater than its marginal cost of 
generation, MC. 

MR, MR,, \DR@ - Qc 

Figure 1. Best-Response Prices with Generation Greater than Contract Quantity 

If Firm A sells less electricity than its contract quantity, then its best-response 
price will be less than its marginal cost. To see this consider the case given in 
Figure 2. The same curves are drawn as given in Figure 1. The only difference, 
is that DR@) - Qc crosses the vertical (price) axis at a value of p that is less than 
Firm A's marginal cost. This implies that at a market price equal to Firm A's 
marginal cost, the amount of output Firm A sells is less than its contract quantity. 
To compute the best-response prices without contract cover in this case I proceed 
in the same manner as described for Figure 1. For the case of contract cover, I 
must extend, MRc, the marginal revenue curve for DR&) = DR(p) - Qc past the 
vertical axis to the point where it crosses Firm A's marginal cost curve. This 
gives the profit-maximizing level of net output for Firm A given its contract 
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12 FRANK A. WOLAK 

quantity Qc. The price such that Sc = DR@) or S, - Qc = DR,@) is PC, the best- 
response price with contract quantity Q, As shown in the diagram, this price is 
less than Firm A's marginal cost. The intuition for this result, is that if Firm A 
has a greater contract quantity than electricity sales, its realized profits are 
maximized at a price less than its marginal cost. This can be seen by inspection 
of equation (3). Because DRXp) = DR(p) - Qc is negative, the profit contribution 
of the first term will be positive only if the market price is less than Firm A's 
marginal cost. 

Figure 2. Best-Response Prices with Generation less than Contract Quantity 

If Firm A becomes sufficiently over-contracted, its best-response price can 
even become zero, assuming negative market prices are not possible. If the 
market rules allow negative market clearing prices, then its best-response price 
would be negative. To see this logic, consider Figure 3, which repeats the 
curves drawn in Figure 2, but with DR@) - Qc shifted further to the left. The 
value of Qc relative to DR(p) is so large that the price at which DR(p) - Qc 
crosses the vertical axis is less than negative one times Firm A's marginal cost. 
Repeating the analysis in Figure 3, yields a best-response price that is negative. 
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1 IMPACT OF HEDGE CONTRACTS 13 

If negative market-clearing prices are not possible, then Firm A's best-response 
price in this case would be zero. In NEM1, the generators can pay to produce 
electricity in a load period, although the minimum price to consumers is zero. 
If the smallest price sufficient to satisfy total system demand is negative, then 
all generators producing during this half-hour pay this price to sell power into 
market, but electricity suppliers and large customers purchasing electricity from 
the market receive it for free. Because hedge contracts are tied to the market 
price and not the price generators must pay to produce, best-response pricing for 
Firm A under NEMl rules for this hedge contract scenario is a market price 
equal to zero. 

Figure 3. Best-Response Prices with Generation Significantly less than Contract Quantity 

Given that the best-response price with contract cover is always lower than the 
best-response price, one might ask why Firm A should hold any contract cover. 
Clearly, the simple answer is that, Firm A always sells significantly more 
electricity under the best-response price with contract cover relative to what it 
sells at the best-response price without contract cover. In all of the figures Sc > 
S,,, and in many cases by a substantial amount. Consequently, in choosing its 
contract quantity, Firm A should balance these two competing goals, higher 
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14 FRANK A. WOLAK I 

market-clearing prices with less contract cover and higher sales with greater 
contract cover. The optimal contracting strategy assuming best-response pricing 
balances these two goals. 

The fundamental determinant of the optimal amount of contract cover from the 
perspective of maximizing variable profits from bidding into the electricity market 
is the price elasticity of the residual demand that Firm A faces for its output. 
Recall the definition of the residual detnand given earlier: DR(p) = Q - SO@). 
The only term in DR(p) that depends on price is SO@), the amount supplied at 
price p by all other participants in the market besides Firm A. Therefore, the 
slope of the residual demand is minus one times the slope of the bid function of all 
other participants besides Firm A. The more aggressively these firms bid, the 
greater will be the surge in additional supply from these firms for a given increase 
in the market-clearing price. 

The greater is the supply response from Firm A's competitors, the more elastic 
is the residual demand that Firm A faces. On the other hand, if these firms do not 
bid aggressively, there is a smaller surge in supply from these firms for a given 
increase in the market-clearing price. Very little supply response from Firm A's 
competitors implies a less elastic residual demand for Firm A's output. A less 
elastic demand implies a more steeply sloped residual demand function and 
therefore a greater divergence between the best-response-price without contract 
cover and best-response price with contract cover, and a smaller divergence 
between Firm A's production at these two prices. Conversely, a more price- 
elastic residual demand function implies a smaller divergence between these two 
prices and a greater divergence between Firm A's sales with and without contract 
cover. 

Figure 4 illustrates a case where Firm A faces a very flat residual demand 
curve for its output. The divergence between the two best-response prices is very 
small, whereas Firm A sells significantly more output with contract cover than 
without contract cover. A firm faced with this sort of residual demand has a 
significantly greater incentive to sell contract cover for its output than a firm 
facing the steeper residual demand in Figure 1. If this firm sells more hedge 
contracts, then it will bid more aggressively into the electricity spot market in 
order sell more electricity than its forward financial obligation. This, in turn, will 
leave its competitor with a more elastic residual demand curve, which causes these 
competitors to want to sell more financial hedge contracts. Consequently, the 
incentives one firm has to sell financial contracts produces incentives for its 
competitors to sell more financial hedge contracts. As we show later in the paper, 
the amount of contract cover the firm finds optimal to sell also depends on its 
preferences towards risk. 

Before analyzing the empirical implications of these results for the bidding and 
contracting behavior of Firm A, I provide an overview of the market structure of 
NEMl and market rules governing its operation. 
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IMPACT OF HEDGE CONTRACTS 

Figure 4. Divergence Between Best-Response Prices with Price Elastic Residual Demand 

4. OVERVIEW OF NEMl 

The Victoria Power Exchange (VPX) is the longest running wholesale 
electricity market in Australia. It was established under the Electricity Industry 
(Amendment) Act of 1994 and formally began operation on July 1, 1994. The 
New South Wales (NSW) SEM began operation May 10, 1996. NEMl is the 
competitive electricity market established jointly by NSW and Victoria on May 4, 
1997. It introduced unrestricted competition for generation dispatch across the 
two states, i.e., the cheapest available generation, after allowing for transmission 
losses and constraints, is called on regardless of where it is located, and all 
wholesale energy is traded through the integrated pool. The spot price in each state 
is determined with electricity flows in and between the state markets based on 
competitive bids or offers received in both markets. 

The ultimate goal of this process is to establish a single interconnected 
electricity market across Queensland, NSW, Victoria and South Australia. The 
next step of this process began on December 12, 1998 when the Victoria and NSW 
markets were merged into a single national market. The Australian Capital 
Territory (ACT) is part of the NSW pool and South Australia trades through the 
Victorian pool. Queensland is not yet connected to the NSW grid, but this 
interconnection is planned to be in place by 2001. A link to Tasmania is also 



D
ow

nl
oa

de
d 

B
y:

 [S
ta

nf
or

d 
U

ni
ve

rs
ity

] A
t: 

21
:2

6 
8 

M
ar

ch
 2

00
8 

16 FRANK A. WOLAK 

under consideration. 
The formation of NEMl started the harmonization of the rules governing the 

operation of the two markets in Victoria and NSW. The market structures of the 
two electricity supply industries in Victoria and NSW are similar in terms of the 
relative sizes of the generation firms and the mix of generation capacity by fuel 
type, although the NSW industry is a little less than twice the size (as measured by 
installed capacity) of the Victoria industry and the largest 3 generators in NSW 
control a larger fraction of the total generation capacity in their market than the 
three largest generators in Victoria control of their market. 

A. Market Structure in NEMl 

In 1994, restructuring and privatization of the State Electricity Commission of 
Victoria (SECV) took place at the power station levels. Each power station was 
formed into a separate entity to be sold. All former SECV generation capacity is 
now privately owned. Buyers have come from within Australia and abroad. 
For example, PowerGen, the second-largest United Kingdom generating company, 
owns a 49.9% share of Yallourn Energy, along with investors from Japan and 
Australia. Mission Energy, a U.S. company, owns 51% of the Loy Yang B 
station. Currently there are eight generating companies competing in Victoria. 
The supply and distribution sector was formed into five privatized companies 
which are owned by a combination of U.S. utilities and Australian companies. 

The NSW SEM has four generators competing to supply power. All 
generating assets are still owned by the NSW government. There are seven 
corporatized state-owned electricity distribution and supply companies serving 
NSW and the Australian Capital Territory (ACT). The eventual goal is to 
privatize both the generation and supply companies, but the current very low 
electricity prices in NEMl have delayed this process indefinitely. 

In both Victoria and NSW, there is an accounting separation within the 
distribution companies between their electricity distribution business and their 
electricity supply business. All other retailers have open and non- 
discriminatory access to any of the other distribution company's wires. In NSW, 
the high-voltage transmission grid remains in government hands. In Victoria, 
the high-voltage transmission grid was initially owned by the government and 
called PowerNet Victoria. It was subsequently sold to the New Jersey-based 
US company GPU and renamed GPU-PowerNet. In NSW the transmission 
company is called TransGrid. Both the state markets operating under NEM1- 
SEM in NSW and VPX in Victoria-were state-owned corporatized entities 
separate from the bulk transmission entities. 

'Wolak (1999) provides a more detailed discussion of the operating history of the VPX and 
compares its market structure, market rules and performance to the markets in England and 
Wales, Norway and Sweden and New Zealand. 
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IMPACT OF HEDGE CONTRACTS 17 

Peak demand in Victoria runs approximately 7.2 GW. The maximum amount 
of generating capacity that can be supplied to the market is approximately 9.5 GW. 
Because of this small peak demand, and despite the divestiture of generation to the 
station level, three of the largest baseload generators have sufficient generating 
capacity to supply at least 20% of this peak demand. More than 80% of 

I generating plant is coal-fired, although some of this capacity does have fuel 
switching capabilities. The remaining generating capacity is shared equally 
between gas turbines and hydroelectric power. The NSW market has a peak 
demand of approximately 10.7 GW and the maximum amount of generating 
capacity that can be supplied to the market is approximately 14 GW. There are 
two large generation companies each of which controls coal-fired capacity 
sufficient to supply more than 40% of NSW peak demand. The remaining large 
generator has hydroelectric, gas turbine and coal-fired plants. The Victoria peak 
demand tends to occur during the summer month of January, whereas peak 
demand in NSW tends to occurs in the winter month of July. 

The full capability of the transmission link between the two states is nominally 
1,100MW from Victoria to NSW, and 1,500MW in the opposite direction, 
although this varies considerably depending on temperature and systems 
conditions. If there are no constraints on the transfer between markets, then both 
states see the same market price at the common reference node. If a constraint 
limits the transfer capacity then prices in both markets diverge, with the importing 
market having a higher price than the exporting market. 

There is a large joint two-state and federal government-owned hydroelectric 
participant, the Snowy Mountains Corporation, at the boarder of Victoria and 
NSW that sells into both markets. It owns 3.37 GW in capacity. Although all 
inter-pool energy flows are determined by competitive bids, for the first stage of 
NEMl the existing Snowy arrangements in each of the two State markets have 
been retained. Snowy entitlements in the two markets receive different spot 
prices most of the time even though they are physically located at the same place 
on the network. To prevent possible arbitraging by the Snowy Hydro Trading 
Company between the two markets, it is required to submit a bid which will be 
proportioned between the markets in line with the size of the entitlements (- 29% 
into Victoria and -71% into NSW). Trading also takes place across the 
VictoriaiSouth Australia border, with South Australia participating as a VicPool 
market participant in NEM 1. 

The market is mandatory in the sense that generators who operate generating 
units larger than 30MW must offer all electricity to be produced by those units 
into the market on a day-ahead basis. Generating facilities of less than 30MW in 
capacity that are embedded in the local distribution network do not need to be 
centrally dispatched or trade in the market; however they may elect to do so. 
Pool customers are retail suppliers and 'contestable' customers (large commercial 
or industrial customers who have half-hourly meters installed). 
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18 FRANK A. WOLAK I 

B. Market Rules in NEMl 1 

With a few minor exceptions, NEMl has standardized the price-setting process 
across the two markets. Generators are able to bid their units into the pool in 10 
price increments which cannot be changed for the entire trading day-the 24 hour 
period beginning at 4 am and ending at 4 am the next day. The 10 quantity 
increments for each genset can be changed on a half-hourly basis. Demanders 
can also submit their willingness to reduce their demand on a half-hourly basis as 
function of price according these same rules. Nevertheless, there is very little 
demand side participation in the pool. A few pumped storage facilities and iron 
smelter facilities demand-side bid, but these sources total less than 500 MW of 
capacity across the two markets. 

All electricity is traded through the pool at the market price and all generators 
are paid the market price for their energy, unless it is equal zero. For the reasons 
discussed earlier, generators may have to pay money to supply power during that 
half-hour periods with zero prices. The ex-ante Dispatch Price determined for 
each 5-minute dispatch cycle is the maximum of: (1) the highest-priced capacity 
band which is targeted by the economic dispatch system and (2) the Interpool 
transfer price. The spot price for the half hour is the average of the six ex-ante 
dispatch prices for each 5-minute cycle of the local dispatch process. As noted 
earlier if this average is negative the market price is set to zero. If demand 
exceeds supply for a 5-minute interval, then the price is set equal to the Value of 
Lost Load (VOLL), which is currently set equal to 5,000 $AU/MWH. 

Power flows between the two state markets are determined at 5-minute 
intervals, taking into account the competitive bids and offers into each of the state- 
based markets. Power flows between the two markets may be constrained by 
technical interconnector line limits due to such factors as thermal and power 
system stability. The scheduling process takes into account these restrictions on 
flows between the two markets. 

C. Regulatory Oversight of NEMl 

Under NEMl, the Office of the Regulator General in Victoria was responsible 
oversight of the Victoria Electricity Supply Industry. It sets prices for both 
transmission and distribution services, using a price cap regulation plan. In NSW 
the Independent Pricing and Regulatory Tribunal oversaw the operation of the 
SEM. It was charged with setting prices for transmission and distribution 
services, using a price cap regulation plan. Australia Competition and Consumer 
Commission regulates the state transmission grids in the integrated national 
electricity market. Oversight of distribution companies remains with the two 
state regulatory bodies. 
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IMPACT OF HEDGE CONTRACTS 

5. MODELING THE PRICE-SETTING IN THE NEMl 

This section describes the results of my attempts to model the price-setting 
process in NEMl using generator bid data and market demand data that I obtained 
for the period May 15, 1997 to August 24, 1997. An accurate model of the price- 
setting process is necessary to compute the profit function given in equation (5) 
for Firm A for any set of bids submitted by Firm A's competitors and level of 
market demand net of transfers in the state in which Firm A operates. The day- 
ahead generator bids in NEMl consist of the following information for each 
generating unit: (1) the quantity or capacity band bid (in MW) for each half-hour, 
(2) available capacity in MW for each half-hour, (3) fixed loading quantity (in 
MW) for each half-hour, and (4) the 10 daily price bids in Australian cents1MWH. 

There are nine quantity band bids which determine the nine quantity bid 
increments. The last, and most often, tenth half-hourly quantity band is determined 
by CAPIMM, the maximum amount of capacity available from the facility during 
that half-hour. Demand-side bids have a similar structure except that bidders 
tend not to use all 10 bid incrementx6 

The nine quantity bids and the CAPIMM quantity together with the ten price 
bids can be used to determine a supply curve for each generating unit for each half 
hour. Often the value of CAPIMM for a given half-hour is set to a number less 
than the sum of the nine capacity bands, or is set equal to zero.7 In those 
instances, only those capacity bands or portions of bands less than CAPIMM are 
considered in the construction of the aggregate supply curve for that half-hour. If 
the dataset has a value for FIXED for a given generating facility for a given half- 
hour, that generation facility is assumed to run at that capacity for the half-hour 
and the FIXED capacity is subtracted from the aggregate demand and excluded 
from the aggregate supply bid function used to set the predicted market price. 
All of these adjustments to the price-setting process where verified by members of 
the NEM 1 staff as reflecting what is actually done in the price-setting process. 

The first approach to modeling the price-setting process uses the intersection of 
the half-hourly demands-net of demand-side bids, FIXED bids for all generators 
for that half-hour, and transfers between the markets-with the half-hourly 
aggregate supply curve to determine a predicted price of electricity for each half- 
hour. The second approach to modeling the price-setting process uses the 
intersection of the half-hourly supply curve with the 5-minute ahead demand 
forecasts net of these same half-hourly magnitudes to compute the 5-minute ahead 

'The demand-side bidders usually draw power from the system at full capacity or shut down 
completely. 

'Values of CAPIMM equal to zero are common. For example, treating the unit of 
observation as the generating unit and day pair, roughly 20% of the observations defined in this 
way have values of CAI'IMM equal to zero. This percentage of values of CAPIMM equal to 
zero is uniform across the 48 load periods in the day, with a minimum over all load periods of 
20.8 percent zeros and a maximum of 21.6 percent zeros. 
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20 FRANK A. WOLAK 1 

prospective price. The six prospective 5-minute ahead prices for each half-hour 
are then averaged to compute a prediction of the half-hourly price. The latter 
process more closely follows the actual price-setting process, so it is hoped that 
the extra computational burden would be justified by the increased accuracy in 
replicating actual pool prices. 

All bid prices for each generating unit are adjusted for loss factors obtained 
from NEMl staff to convert all prices to the standard reference node for the 
purposes of constructing the aggregate supply function. Demand-side bidders, 
primarily pumped-storage facilities, were treated in the same manner as supply- 
side bidders in the construction of the aggregate supply curve, with the only 
difference being that if the market price is less than their bid price, the load will be 
in service and if it is greater than the bid price, the load will not be in service. 

A. Simulations: Predicted Versus Actual Prices 

The first two columns of Table 1 give the sample means and standard 
deviations at the load period level of the actual half-hourly pool price from the 
NSW market for the period May 15, 1997 to August 24, 1997. The second two 
columns give the sample means and standard deviations of the predicted prices 
obtained using the intersection of the average half-hourly demands with the half- 
hourly supply curves to determine the half-hourly market-clearing price. Before 
comparing the results of these calculations, it is important to note that the use of 
half-hourly demand to determine market-clearing prices introduces some degree of 
approximation into my results relative to the actual price-setting process. This 
approximation to the actual price-setting process should therefore work best in 
those instances in which electricity demand of over the half-hour period is stable, 
meaning that the half-hourly demand figure is representative of all of the five- 
minute ahead demand figures in that half-hour period. Conversely, the load 
periods when my approximation technique should work poorly are those where the 
5-minute ahead demand forecasts in a half-hour period differ significantly from 
one another, due to an increasing or decreasing system demand during that half- 
hour. For the purposes of this table and all subsequent tables, Period 1 
corresponds to the half-hour beginning at 4:00 am and Period 48 corresponds to 
the half-hour beginning at 3:30 am the following day. 

Comparing the mean prices in columns 1 and 3 of the Table 1, shows that my 
procedure does a good job of predicting the actual half-hourly prices for most of 
the load periods. The difference between the mean actual price and the mean 
predicted price is almost always less than one Australian dollar. The largest this 
difference ever gets is a little less than three dollars in load period 30, the period 
beginning at 6:30 pm. I expect the half-hourly average demand to be very 
unrepresentative of the 5-minute ahead demands for that half-hour. This is borne 
out by the extremely high standard deviation of actual prices during that period 



D
ow

nl
oa

de
d 

B
y:

 [S
ta

nf
or

d 
U

ni
ve

rs
ity

] A
t: 

21
:2

6 
8 

M
ar

ch
 2

00
8 

IMPACT OF HEDGE CONTRACTS 

Table 1. Means and Standard Deviations of Actual, Predicted, and Best 
Response Prices Assuming MC = $15/MWH 

Using Half-Hourly Demands to Set Prices for Full Sample of Bid Data 
- - - 

Actual Pr~ce Pred~cted Pr~ce Best Response Prlce 

Per~od Mean Std Dev Mean Std Dev Mean Std Dev 
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22 FRANK A. WOLAK 

and those adjacent to it. My model of the price-setting process is also able to 
predict the standard deviation of the actual half-hourly prices as well. 
Comparing the numbers in columns two and four, I find relatively close agreement 
between period-level the standard deviations of prices. These results lead me to 
conclude that my model of the price-setting process which uses the average half- I 

hourly demands satisfactorily replicates the actual price-setting process and can be 
used to perform meaningful counterfactual experiments such as my best-response 

~ 
I 

price analysis. 
To see if these results could be improved upon, I used the 5-minute-ahead 

demand data for the month of July 1997 in my simulation of the price-setting 
process. With this data, I first compute the intersection of the aggregate supply 
curve for the associated half-hour for each of the 5-minute demand forecasts in 
that half-hour. This gives 6 predicted 5-minute-ahead prices, which are then 
averaged to compute the predicted pool price for that half hour. If the average of 
the 5-minute ahead predicted prices in a half-hour are negative, then this price is 
set equal to zero as required by the pool rules. 

Table 2 gives the sample means and standard deviations of the actual half- 
hourly price and the predicted half-hourly price using the five-minute-ahead data 
for a sample of 5-minute demands from July 2,1997 to July 30, 1997. The 5- 
minute ahead demand data yields similar results to the half-hourly demand data, 
but with larger average misses than the half-hourly demand data. There are a 
variety of reasons why these price predictions differ from the actual market prices. 
A one reason can be traced to how transfers between the two markets are handled 
in the computation of market-clearing prices. As noted above, in both the half- 
hourly demand and 5-minute ahead demand simulated price-setting processes I 
assume that the half-hourly transfer capacity, TRANSF, is either added or 
subtracted from the aggregate demand forecast. However, different transfers are 
taking place during each 5-minute interval. Unfortunately, I am unable to obtain 
access to the five-minute transfer data necessary to model the actual price-setting 
process more accurately. A final reason for the difference between the two prices 
is also the most difficult to deal with. Each generation owner submits a ramp rate 
for each facility for each half-hour during the day giving the maximum rate at 
which the amount of power supplied from that facility can charge. According to 
the NEMl rules for the price-setting process, plants constrained at their ramp rate 
during a 5-minute interval cannot set the price for that 5-minute interval. This 
implies that the 5-minute ahead price is not just the price at the point where 
aggregate demand crosses the half-hourly aggregate supply function. In order to 
know which generators to skip over because their ramp rates cannot cover the 
increase in demand across a 5-minute interval, I need to know the current 
operating level of all generators. Although, the ramp rate for a generating unit is 
given in the bid database, I do not know the amount of capacity in use at each 
generating facility for each 5-minute interval. Fortunately, information on the 
capacity level of each generating facility is only required for a single 5-minute period, 
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IMPACT OF HEDGE CONTRACTS 

Table 2. Means and Standard Deviations of Actual 
and Predicted Half-Hourly Prices Using Using 5-Minute Ahead Demand 

to Determine Predicted Price for Period 712197 to 7130197 

Actual Price Predicted Price 

Period Mean Std Dev Mean Std Dev 

1 $11.33 $1.11 $16.45 $27.52 
2 $11.05 $1.11 $16.16 $27.33 
3 $11.28 $1.01 $15.94 $24.94 
4 $11.61 $1.06 $16.11 $23.91 
5 $12.12 $1.06 $16.35 $21.87 
6 $13.40 $3.60 $17.28 $18.36 
7 $13.07 $3.28 $15.93 $12.45 
8 $14.72 $5.96 $14.96 $4.85 
9 $14.21 $4.71 $14.42 $4.73 

10 $13.09 $2.46 $13.62 $3.14 
11 $13.52 $1.36 $13.58 $1.94 
12 $13.87 $2.14 $13.67 $1.88 
13 $14.15 $1.75 $13.85 $2.55 
14 $14.78 $2.71 $16.47 $16.62 
15 $12.79 $1.43 $16.10 $16.70 
16 $12.69 $1.29 $16.65 $20.38 
17 $12.61 $1.51 $15.69 $16.15 
18 $12.61 $2.08 $15.97 $18.36 
19 $12.70 $1.93 $16.64 $21.82 
20 $12.30 $1.21 $16.26 $20.45 
21 $12.29 $1.20 $16.50 $21.92 
22 $12.64 $2.49 $16.17 $20.47 
23 $12.22 $1.22 $16.30 $21.89 
24 $12.26 $1.15 $16.71 $24.41 

I 25 $12.32 $1.13 $15.32 $18.61 
26 $12.84 $1.39 $13.53 $7.66 
27 $16.24 $8.06 $13.38 $4.41 
28 $20.47 $13.31 $15.28 $6.57 
29 $17.21 $7.97 $16.79 $13.36 
30 $22.93 $18.00 $17.17 $11.37 
3 1 $19.83 $11.78 $17.22 $11.11 
32 $17.19 $7.34 $15.68 $7.27 
33 $18.62 $8.15 $16.21 $7.86 
34 $17.23 $7.55 $15.81 $7.11 
35 $14.44 $5.79 $14.82 $7.08 
36 $13.20 $4.15 $12.82 $4.04 
3 7 $14.25 $2.97 $12.77 $2.91 
3 8 $13.20 $2.36 $13.28 $4.65 
39 $18.18 $6.44 $14.27 $6.12 
40 $14.91 $4.20 $13.54 $1.98 
41 $13.57 $2.14 $16.68 $18.74 
42 $13.46 $1.03 $17.40 $21.99 
43 $16.34 $3.35 $18.37 $23.56 

I 44 $14.66 $2.66 $19.32 $24.80 
45 $13.89 $ 1.77 $18.16 $24.89 

I 46 $12.80 $1.03 $17.70 $26.06 
47 $12.39 $1.01 $17.39 $27.27 
48 $11.63 $0.89 $16.81 $27.38 
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24 FRANK A. WOLAK I 
because once this initial level is known, all 5-minute ahead prices can be 
determined relative to that point. Incorporating this information into the process 
of simulating actual prices would enormously increase the computational 
complexity of my problem. Given the accuracy I am able to achieve in 
predicting actual prices using the half-hourly demands, I decided this increase in 
complexity was unnecessary at this time. I therefore employ the price-setting 
process which uses average half-hourly demands to perform my best-response 
price analysis. 

6. SIMULATIONS OF BEST-RESPONSE PRICES 

This section uses the best-response pricing framework described in Section 2 
and the price-setting process described in the previous section to perform various 
simulations which estimate the potential profit increases possible from achieving 
best-response prices relative to Firm A's current bidding strategy. The first step 
is to compute Firm A's profits from any market-clearing price. In order to do so, 
several elements of Firm A's profit function must be specified. First, an estimate 
of the marginal cost of generating a MWH is required. From my conversations 
with staff at Firm A, numbers in the range of 7.5 $AU/MWH and 15 $AU/MWH 
were deemed reasonable, with 15 $AU/MWH the most plausible. Second, 
knowledge of contract prices and quantities for each half-hour period is necessary 
to obtain an accurate estimate of the variable profits accruing to Firm A from 
following any particular bidding strategy. Quantity-weighted average contract 
price and quantity information for my sample period was provided by staff at Firm 
A. This completes the information necessary to compute an estimate of Firm A's 
profit function for any half-hour. 

A. Computing Profits under Best-Response Pricing 

The first step in my analysis is to compute a baseline level of profits to 
compare to my estimated profits from using best-response prices. To compute 
estimates of the actual profits accruing to Firm A from its current bidding strategy, 
I first set values for marginal cost, MC, and the contract prices and quantities, PC 
and QC, for each load period and day in my sample. I then take the actual pool 
price from the NSW market for each load period as the value of p. For the value 
of DR@) at the actual market clearing price, I take the final pre-dispatch values for 
each load period given in the bidding database (the variable DISPTG) for all Firm 
A units. The first column of Table 3 gives the mean of my estimates of the actual 
load period level profits for my sample period assuming that MC = 15 $AU/MWH. 
These profit levels and all profit levels reported in the paper are multiplied by a 
positive scalar to preserve confidentiality but also to allow all profits levels and 
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IMPACT OF HEDGE CONTRACTS 25 

Table 3. 

Period 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1 
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

Load Period Level Profits Assuming Marginal Cost of Generation 
Equals $lS/MWH 

Mean of Mean of Best Response Profits1 Best Response Profits1 
Actual Profits Predicted Profits Actual Profits Predicted Profits 
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26 FRANK A. WOLAK 

ratios to be comparable across tables. Only the absolute magnitude of profits is 
unknown. The first column of Tables 4 and 5 gives the mean of my estimates of 
the actual load period level profits for my sample period assuming that MC = 10 
$AU/MWH and MC = 7.5 $AU/MWH, respectively. These numbers represent 
my best guess of the mean values of load period-level variable profits given the 
information at my disposal for these three values of Firm A's marginal cost of 
generation. 

My simulation of the actual price-setting process for a given bid function forms 
the basis of my best-response calculations. To give a flavor for what my price 
predictions imply about variable profit levels relative to those computed based on 
actual market prices and pre-dispatch levels, in the second column of Tables 3-5, I 
present my average load-period-level predictions of Firm A's variable profits, 
employing my price-setting process that uses the half-hourly demands. For each 
load period, I solve for the smallest value of p such that SA@) = DR@), i.e., the 
amount Firm A is willing to supply (according to its actual bids) is equal to the 
residual demand that it faces for its output. Call this price p *. To compute Firm 
A's variable profits, I set p in equation (5) equal to p *  and the amount supplied by 
Firm A equal to DR(p*). This provides all of the information necessary to 
compute an estimate of Firm A's variable profits for my model of the price- 
determination process. The means of these load-period-level predicted profits 
are reported in the second column of Tables 3-5 for the marginal cost scenarios I 
consider. Despite the fact that I am using the half-hourly demands in my model 
of the price-setting process, I find close agreement between the actual profits and 
predicted profits for all load periods across all three tables. These results provide 
further support for the validity of my model of the price-setting process. 

B. Computing Best-Response Prices 

We now proceed to the final step of my analysis, a comparison of the profits 
from best-response prices to those obtained from the actual bidding strategy. 
Throughout this entire discussion I am assuming that all other firms in the market 
do not change their strategies in response to a change in Firm A's bidding strategy. 
My best-response price framework can be easily expanded to deal with changes in 
the bidding strategies of other firms, or uncertainty in their bidding strategies. In 
addition, as noted earlier, a full-blown computation of the actual best-response 
bidding strategy giving the optimal daily values of the ten bid prices for each 
generating unit and ten half-hourly capacity declarations for each generating unit 
will not be pursued here. Instead, the goal of my analysis is to show the 
maximum potential profits obtainable from pursuit of such a strategy and to 
characterize its general features. As discussed in Section 2, these maximum 
potential profits from best-response prices may not be obtainable because of the 
constraints placed on Firm A's bid functions by the market rules. 
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IMPACT OF HEDGE CONTRACTS 27 

Table 4. Load Period Level Profits Assuming Marginal Cost of Generation 
Equals $1 OIMWH 

Mean of Mean of Best Response1 Best Response1 
Period Actual Profits Predicted Profits Actual Profits Predicted Profits 

I $12,315 $11,778 1.06 1.10 
2 $12,393 $11,844 1.05 1.10 
3 $12,994 $12,616 1.04 1.07 
4 $13,594 $13,482 1.06 1.07 
5 $15,227 $15,293 1.13 1.13 
6 $17,624 $17,822 1.22 1.21 
7 $31,509 $32,275 1.17 1.15 
8 $34,444 $34,7 11 1.18 1.17 
9 $35,857 $35,862 1.15 1.15 

10 $35,894 $35,669 1.12 1.13 
I I $35,804 $35,691 1.17 1.17 
12 $35,636 $35,450 1.15 1.15 
13 $36,hC12 $36,117 1.11 1.12 
14 $36,352 $35,834 1.10 1.11 
15 $353'6 $35,501 1.10 1.11 
16 $40,6l8 $40,364 1.09 1.10 
17 $35,608 $35,584 1.08 1.09 
18 $34,382 $34,325 1.09 1.09 
19 $34,3? 1 $34,239 1.09 1.09 
20 $33,608 $33,537 1 .OX 1.09 
21 $33,03 1 $32,849 1 .OX 1.09 
22 $32,207 $32,298 1.07 1.07 
23 $32,078 $32,158 1.07 1.06 
24 $32.777 $32,892 1 .Oh 1.06 
25 $34,851 $34,933 1.05 1.05 
26 $35,146 $35,480 1.06 1.05 
27 $36,769 $37,306 1.09 1.07 
28 $38,829 $38,727 1.11 1.12 
29 $38,761 $38,256 1.10 1.11 
30 $38,801 $37,915 1.07 1.10 
3 1 $38,044 $37,415 1.07 1.09 
32 $37,540 $37,052 1 .OX 1.09 
3 3 $36.7'71 $36,492 1.11 1.11 
34 $35,5"6 $35,172 1.10 1.11 
35 $37,1110 $36,619 1.13 1.15 
36 $36,1!5 $35,935 1.07 1.07 
3 7 $20,644 $20,677 1.24 1.24 
38 $20,0.10 $19,724 1.16 1.18 
39 $20,866 $20,435 1.19 1.22 
40 $19,867 $19,593 1.22 1.23 
41 $19,285 S19,101 1.26 1.27 
42 $18,077 $17,833 1.26 1.27 
43 $17,661 $17,091 1.21 1.25 

1 44 
$15,917 $15,679 1.19 1.21 

45 $14,413 $14,262 1.20 1.22 
I 46 $13,681 $13,329 1.15 1.18 

47 $13,031 $12,604 1.09 1.13 
48 $12,485 $12,043 1.06 1.10 
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28 FRANK A. WOLAK 

Table 5. Load Period Level Profits Assuming Marginal Cost of Generation 
Equals $7.50/MWH 

Mean of Mean of Best Response Profits1 Best Response Profits1 

Period Actual Profits Predicted Profits Actual Profits Predicted Profits 
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IMPACT OF HEDGE CONTRACTS 29 

I compute how much actual profits, equation (5), could be increased if Firm A 
had obtained best-response prices over the sample period, taking its contract 
position as given. In these calculations, I assume that Firm A's contract quantity, 
QC, and contract price, PC, cannot be changed. Other calculations with my 

I model reported below suggest that substantial increases in expected profits are 

I possible from a change in QC. 
The last two columns of Table 1 contain the sample mean and standard 

deviation of these optimal best-response prices at the load period level for my 
sample period May 15, 1997 to August 24, 1997, assuming the marginal cost of 
generation is 15 $AU,MWH. For all but load period 1, these prices are higher, 
sometimes significantly so, than either the actual market prices, or the predicted 
prices I calculated using Firm A's current bidding strategy. 

The next step in the analysis estimates the increased profits that could be 
earned by Firm A if it were able to set these load period level best-response prices 
through its bidding behavior. The third column of Table 3 gives the ratio of the 
average of best-response profits to the average of actual profits for each load 
period, assuming a marginal cost of generation of $15/MWH. The last column 
gives the ratio of the average of best-response profits to the average of Firm A's 
predicted profits, calculated using my model of the price-determination process. 
These numbers provide my best estimate of an upper bound on the increase in 
profits obtainable by Firm A as a result of implementing a best-response bidding 
strategy. The last two columns of Tables 4 and 5 present the same set of 
calculations as those reported in Table 3 for the cases that the marginal cost of 
producing electricity by Firm A is 10 $AU/MWH and 7.50 $AU/MWH, 
respectively. 

Several conclusions can be drawn from the results reported in these tables. 
First, for all three estimates of the marginal cost of producing electricity used, in 
all load periods there appear to exist opportunities for increasing profits by 
pursuing a best-response bidding strategy, relative to Firm A's current bidding 
strategy. These potential profit increases are largest for the case in which the 
marginal cost of generation is $15/MWH as opposed to $10/MWH and 
$7.50/MWH. The second conclusion is that there are considerable differences in 
the magnitude of these potential profit increases across load periods in the day. 
For example, the potential increases estimated range from as small as 4% in some 
load periods to as large as 44 % in other load periods. The ratio of the sample 
mean profits (over all load periods and days) from the best-response bidding 
strategy to the sample mean predicted profits (over all load periods and days) from 
the current bidding strategy yields a value of 1.17 for the case of the marginal cost 
of generation equal to 15 $AU/MWH, 1.12 for the case of a marginal cost of 
generation equal to 10 $AU/MWH and 1.11 for the case of a marginal cost of 
generation equal to 7.5 $AU/MWH. That is, my initial estimates predict an 
average improvement in profitability of 11% to 17% over the sample period from 
following a bidding strategy which yields these best-response prices. 
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30 FRANK A. WOLAK 1 

Taken as a whole, these results suggest that increases in profits are available to 
Firm A from achieving best-response prices, assuming no change in its contract 
position. What is unknown is the extent to which Firm A can achieve these 
increased profits through its actual bidding strategy. Nevertheless, this result 
provides a justification for the computational effort necessary to solve for the best- 
response bidding strategy. 

C. Best-Response Prices and Contract Quantities i 
As noted above, my modeling framework can be used to explore the impact of 

changes in Firm A's contract position on its best-response prices. I consider two 
simple cases. The first case assumes Firm A holds no contracts. The second 
case assumes that it uniformly cuts its contract position to half its present level, 
but maintains the same contract prices. I compute Firm A's best-response prices 
and profits under both of these scenarios. The first scenario implies that the 
second two terms in equation (2) are identically equal to zero. Under this 
assumption I have computed the best-response price, p*, and the best-response 
profits for a marginal cost of generation of $15/MWH. Table 6 gives the load 
period level mean and standard deviations of these profit levels for my sample 
period. 

The first point to notice from these tables is the substantial increases in 
average variable profits in most load periods relative to the average variable 
profits under both the current bidding strategy with the current level of contract 
cover and under best-response pricing with the current level of contract cover. 
However, these mean variable profit increases are not without a downside. The 
second column of Table 5 shows that very large standard deviations in variable 
profits result from the no contract cover best-response prices. The presence of 
nonzero contract quantities considerably reduces the variability in load period 
level profits. According to my model, this is at a cost of a significant reduction 
in average load period level profits. These calculations suggest that, at a 
minimum, my modeling framework can be a powerful tool for determining the 
relevant trade-offs in terms of the means and variances in profits from pursuing 
different contracting and bidding strategies. 

For comparison, Table 7 computes the average period-level profits assuming a 
marginal cost of 10 $AU/MWH and current contracting levels and the average 
period-level profits that could be obtained if current contract levels were set to half 
their magnitude in all load periods and Firm A was then able to set best-response 
prices at these contract levels. I also compare these profits to those that could be 
obtained at current contracting levels at the best-response prices for current 
contract levels. The second to the last column of this table presents the ratio of 
the best-response pricing profits at half of current contract quantities over the 
actual profits at current prices, quantities and contract levels. The last column 
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IMPACT OF HEDGE CONTRACTS 

Table 6. Load Period Mean and Standard Deviations of 
Best Response Profits with No Contract Cover, Assuming Marginal Cost of 

Generation Equals $1 SIMWH 

Period Mean of Profits Std. Dev. of Profits 
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32 FRANK A. WOLAK 1 

Table 7. Load Period Mean Actual, Predicted and Best Response (BR) Profits 
with Current Contract Quantity (CQ), BR Profits with One-Half Current CQ, 

Marginal Cost of Generation Equals $10/MWH 

Mean of Mean of Mean of BR Mean of BR BR YZ CQI BR L/Z CQI BR ?4 CQ/ 
Actual Predicted at Current Profits at Actual Predicted BR 

Period Profits Profits CQ Profits !A CQ Profits Profits Current CQ 

1 $5,661 $4,900 $12,998 $9,410 1.66 1.92 0.72 
2 $5,486 $4,892 $13,033 $9,082 1.66 1.86 0.70 
3 $6,066 $5,778 $13,546 $9,507 1.57 1.65 0.70 
4 $6,92 1 $6,860 $14,471 $1 1,244 1.62 1.64 0.78 
5 $8,858 $8,877 $17,255 $18,366 2.07 2.07 1.06 
6 $11,315 $11,577 $21,478 $30,115 2.66 2.60 1.40 
7 $18,404 $20,079 $37,015 $41,743 2.27 2.08 1.13 
8 $23,671 $23,237 $40,706 $54,044 2.28 2.33 1.33 
9 $25,105 $24,283 $41,317 $59,059 2.35 2.43 1.43 

10 $23,896 $22,628 $40,339 $54,884 2.30 2.43 1.36 
11 $25,207 $24,373 $41,857 $78,604 3.12 3.23 1.88 
12 $24,597 $23,770 $40,867 $67,087 2.73 2.82 1.64 
13 $24,475 $22,867 $40,554 $54,796 2.24 2.40 1.35 
14 $23,697 $22,214 $39,857 $51,236 2.16 2.31 1.29 
15 $22,772 $22,125 $39,565 $48,941 2.15 2.21 1.24 
16 $25,145 $24,638 $44,480 $47,184 1.88 1.92 1.06 
17 $21,734 $21,423 $38,684 $43,262 1.99 2.02 1.12 
18 $20,800 $20,687 $37,3 18 $41,166 1.98 1.99 1.10 
19 $21,154 $20,785 $37,320 $41,494 1.96 2.00 1.11 
20 $20,556 $19,996 $36,405 $39,486 1.92 1.97 1.08 
21 $19,941 $19,613 $35,764 $38,793 1.95 1.98 1.08 
22 $19,185 $19,092 $34,648 $36,574 1.91 1.92 1.06 
23 $18,929 $19,063 $34,231 $35,858 1.89 1.88 1.05 
24 $19,454 $19,652 $34,821 $36,922 1.90 1.88 1.06 
25 $20,785 $20,760 $36,750 $36,724 1.77 1.77 1.00 
26 $21,736 $22,631 $37,359 $41,356 1.90 1.83 1.11 
27 $24,948 $26,198 $40,026 $55,357 2.22 2.11 1.38 
28 $31,382 $30,433 $43,246 $137,725 4.39 4.53 3.18 
29 $29,841 $27,752 $42,610 $131,300 4.40 4.73 3.08 
30 $29,562 $25,724 $41,643 $79,756 2.70 3.10 1.92 
3 1 $27,011 $24,435 $40,601 $57,303 2.12 2.35 1.41 
32 $25,800 $24,303 $40,556 $52,190 2.02 2.15 1.29 
33 $25,516 $24,697 $40,647 . $55,237 2.16 2.24 1.36 
34 $24,019 $22,723 $39,212 $50,187 2.09 2.21 1.28 
35 $22,507 $21,660 $42,078 $45,839 2.04 2.12 1.09 
36 $20,699 $20,403 $38,627 $36,134 1.75 1.77 0.94 
3 7 $13,627 $13,721 $25,543 $38,353 2.81 2.80 1 .SO 
38 $12,562 $12,160 $23,182 $28,775 2.29 2.37 1.24 
39 $15,205 $13,586 $24,932 $37,505 2.47 2.76 1.50 
40 $13,190 $12,458 $24,156 $33,421 2.53 2.68 1.38 I 

41 $12,644 $12,472 $24,214 $34,303 2.71 2.75 1.42 
42 $11,513 $11,261 $22,724 $30,277 2.63 2.69 1.33 
43 5 12,626 $10,889 $2 1,325 $29,802 2.36 2.74 1.40 
44 $10,443 $9,870 $1 8,996 $24,668 2.36 2.50 1.30 
45 $8,778 $8,634 $17,387 $20,488 2.33 2.37 1.18 
46 $7,749 $7,643 $15,730 $16,808 2.17 2.20 1.07 

! 
I 

47 $6,793 $6,230 $14,267 5 12,947 1.91 2.08 0.91 
48 $5,967 $5,473 $13,286 $10,529 1.76 1.92 0.79 
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IMPACT OF HEDGE CONTRACTS 3 3 

presents the ratio of best-response pricing profits at half of current contract 
quantities over the best-response pricing profits at current contract levels. 
Although the last column shows certain load periods where profits will fall 
because of reduced contract quantities, the increased average profits in other load 
periods more than compensate. The ratio of variable profits over all load periods 
for half of current contract quantities relative to variable profits over all load 
periods at current prices, quantities and contract levels is 2.34. The ratio of 
variable profits over all load periods with best-response pricing and one-half 
current contract levels in the numerator and variable profits over all load periods 
with best-response pricing and current contract levels in the denominator is 1.35. 
These results illustrate the significant potential increases in expected profits 
possible from reductions in the level of contract cover. The same downside 
mentioned above applies to these results as well. Period-level variable profits are 
significantly more volatile when the amount of contract cover is reduced. It is a 
worthwhile empirical question to determine whether a reduced level of contract 
cover combined with allowable best-response bidding would yield these same 
levels of profit increases. 

Although I do not have information on the hedge contract position of other 
firms in the market there are several rules of thumb that can be used to estimate 
the hedge contract position of other major firms in this market. One such rule is 
to take the total capacity of all bids submitted below a given price as the contract 
quantity and the bid-quantity weighted price at which these bids are submitted as 
the contract price. I computed estimates of PC and QC for each load period for 
several of the other major participants in this market for values of this price bound 
at 20 $AU/MWH and 25 $AU/MWH. Using these values of PC and QC and 
similar estimates of the magnitude of the marginal cost of generation, I repeated 
my best-response pricing analysis. For these firms I found similar ratios of the 
average of best-response pricing profits to actual profits (assuming my estimated 
level of contract hedging and marginal costs of generation) to those obtained for 
Firm A. This result suggests that all major participants are employing bidding 
strategies which achieve close to best-response pricing profits. 

7. WHY NEMl FIRMS SELL SO MANY HEDGE CONTRACTS 

Although the previous section shows that there appears to be some 
opportunities for increased profits to Firm A and other major participants from 
modifying the bidding strategies given their current contract positions, the 
difference between their current level of profits and the best-response pricing 
profits for these firms are not so large that one could claim that these firms are 
bidding in an irrational manner. Nevertheless, during this period extremely low 
market prices are being set, many below the presumed marginal cost of generation 
of these participants. As noted above it also is an open question whether a 
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34 FRANK A. WOLAK 

feasible bidding strategy can yield significantly higher profits than Firm A's 
current strategy, given it present hedge contract prices and quantities. The 
computations reported in Section 6 illustrate that reductions in the level of Firm 
A's contract cover can significantly increase the variable profits it can obtain from 
setting best-response prices. Similar results were achieved for this same analysis 

I 

for the other major players in this market. However, as shown in Section 3, the 1 
extent to which reductions in contract cover will increase best-response pricing I 

profits is determined by the elasticity of each firm's residual demand. For Firm 
A, this elasticity depends on the aggregate supply function of all generators 
besides Firm A. Similar logic applies to all other generators in the NEMl 
market-the price elasticity of the residual demand that these generators face 
determines the extent to which best-response pricing by them will yield higher 
average prices from the electricity pool. The logic of the previous sections 
shows that the level of contract cover held by all generators rationalizes the very 
low prices since the beginning of NEMI. 

From conversations with several market participants, there appears to be 
general agreement among the parties involved that the current low electricity 
prices in NEMl are caused by the high levels of contract cover sold by the large 
generators serving this market. For the majority of days in the sample, Firm A 
sells less electricity than it has contract cover for. As Figures 2 and 3 show, the 
best-response price for a generator in this position is less than its marginal cost of 
production. Consequently, given the very high level of contracting of Firm A 
and its major competitors, it is rational for each of these firms to bid very 
aggressively into the pool in order to dispatch as much of their capacity as 
possible. This bidding strategy will yield very low pool prices, which are desired 
so long as the actual amount capacity dispatched is less than the firm's contract 
cover for that half-hour. 

Given this set of circumstances, one question immediately arises: How did the 
major generators get themselves in a situation where aggressive bidding and low 
prices yield the maximum profits possible? Stated differently: Why did the 
generators sign contracts for such a large fraction of their capacity? A complete 
answer to this question involves some speculation, but the analysis of the previous 
section can contribute to an answer. Clearly, a major factor in the decision of the 
large generators to sign these contracts is excess generation capacity to serve both 
the VPX and NSW SEM. Even in the absence of contract cover being held by 
any participants, the large amount of capacity available to serve each state market 
relative to that state's demand in the vast majority of half-hours of the year implies 
that all generators face a significant probability all of their capacity will not be 
dispatched if they do not bid aggressively. If generators believe their competitors 
face these sorts of incentives, then they must in the language of Section 3 perceive 
themselves as facing very price-elastic residual demand functions for their output. 
Under these conditions, generators will find signing a contract that fixes the price 
for a certain quantity of electricity extremely attractive, so long as the contract 
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1 IMPACT OF HEDGE CONTRACTS 35 

price is higher than the generator's marginal cost of producing electricity. This 
follows from the analysis comparing the difference in best-response prices with a 
flat residual demand curve (aggressive bidding by competitors) given in Figure 4 
to the steeper residual demand curve (less aggressive bidding by competitors) 
given in Figure 1. 

Recall that a firm faces a virtually horizontal residual demand curve if its 
competitors bid very aggressively. This desire to sign contracts is particularly 
strong if the generator is risk averse, despite the fact that the expected value of the 
uncertain profit stream greatly exceeds the certain income stream. For a variety 
of reasons, one would expect a government-owned corporatized entity to be 
significantly more risk-averse than a privately-owned company. In fact, if a 
generator manages to sign contracts that exactly match the amount of electricity its 
manages to sell into the pool, that generator has a certain profit stream that is 
independent of the pool price of electricity. To see this result, re-write equation 

Setting DR@) = QC and solving for p, yields n@) = (PC - MC)QC. At the 
market price that causes Firm A sell an amount equal to its contract quantity, its 
profits depend only on its contract price and quantity for that load period and its 
marginal cost of production. Its profits are completely insulated from 
fluctuations in the market clearing price. In fact, it can be shown that the best- 
response price subject to the constraint that Firm A produces its contract quantity 
is equal to its marginal cost. This appears to be the contracting strategy pursued 
by several major participants in this market. 

This low-risk contracting and bidding strategy can have dire longer-term 
consequences if very low market prices are necessary for the generator to sell all 
of its contract quantity. These low prices cause purchasers of contracts to form 
expectations of verj low future prices, which makes it difficult for the generator 
to sell future hedge contracts at prices above its marginal cost. If all generators 
decide to pursue this strategy, the results can be even more troublesome for the 
reasons discussed in Section 4. A very aggressive bidding strategy leaves a 
firm's competitors with very price-elastic residual demands. These very price 
elastic residual demands, by the logic of Figure 1 and Figure 4, increase the 
incentive for these other generators to sell more contract cover. Once these firms 
sell more contract cover, they will have an incentive to bid more aggressively 
into the electricity market, which leaves other generators with more price-elastic 
residual demands. Given these more price-elastic residual demands, the above 
process now repeats itself, leading to even more contracting and even lower 
prices. 
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3 6 FRANK A. WOLAK 1 

The presence of excess generation capacity and risk-averse generating 
companies has contributed to the current low prices in NEM1. This statement 
seems to indicate that reducing the amount of excess capacity in the market can 
lead to higher prices. However, this capacity reduction strategy will only work 
if in response the generators to find it optimal to contract less, which in turn 
causes them to bid less aggressively. This less aggressive bidding will then 
lead to higher prices. Withdrawal of capacity from the market by Firm A can I 
have these desired effects, but the bottom line is still that for all generators' best 
reply prices to be above their marginal costs, they must sell less contract cover 
than they produce in electricity. If Firm A were to reduce its capacity without 
changing its contract cover, so long as this capacity reduction did not prevent it 
from selling its best-response quantity in each load period, its optimal bidding 
strategy would be unaffected by this reduction in capacity and market prices 
should remain the same. 

To understand this logic, consider the expression for the half-hourly profits 
earned by Firm A as a function of the market price. As shown earlier, half- 
hourly profits can be re-written as: 

+) = (DR(p) - QC)(p - MC) + (PC - MQQC. 

The advantage of this expression for half-hourly profits is that the second term, 
(PC - MQQC, is fixed from the perspective of the pool price setting process. 
This term is the profit that the generator earns from its contracts. Note that if 
the amount the generator sells to the pool at price p, DR(p), is less than the 
contract cover, QC, the generator loses money on this process, unless the market 
price is below the generator's marginal cost of production. Consequently, if 
the residual demand faced by Firm A does not change, meaning that if other 
generators do not alter their bidding strategies, then reducing the amount of 
capacity Firm A holds will have no effect on its optimal bidding strategy, so 
long as Firm A is left with capacity greater than DR(p) for all feasible values of 
p. Only changes in a firm's contract quantity will cause its best-response price 
to change. Therefore, any reduction in the amount of capacity bid into the 
market must be accompanied by a reduction in the amount of contract cover for 
this capacity reduction to have any direct effect on a firm's optimal bidding 
strategy. 

How much of a reduction in contract cover is optimal depends on the risk 
tolerance of the firm. The combination of less aggressive bidding by Firm A and 
its competitors will lead to higher prices on average, and significantly higher 
average profits but significantly higher volatility in profits. Higher profit 
volatility will come about because a larger fraction of generation output will be 
sold at pool prices relative to contract prices. 
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IMPACT OF HEDGE CONTRACTS 3 7 

A final reason for the large amount of hedge contracts held by Firm A is the 
relatively large amount of vesting contracts outstanding during this time period. 
Under the rules of the NSW and Victoria markets, generators in these markets 
were required to sell to retail suppliers of electricity hedge contracts in sufficient 
quantity to cover the forecast load of non-contestable, or captive, customers served 
by these retailers. Non-contestable customers are prohibited from choosing their 
retailer. They must purchase electricity from the incumbent local retailer. The 
prices of these vesting contracts are set by the state government at fairly generous 
levels relative to current prices in the wholesale market. Given the relatively 
small number of contestable customers in the NSW and Victoria market during the 
sample period, these vesting contracts were a very large fraction of the quantity of 
hedge contracts held by all generating companies. 

8. MARKET DESIGN IMPLICATIONS AND DIRECTIONS 
FOR FUTURE RESEARCH 

This analysis has yielded several results. First, a detailed analysis of the 
impact of the level of contracting on a firm's best response-prices was presented. 
Here I found that if a firm sells less electricity than it has contract cover, then its 
best-response prices are less than its marginal cost of production. If the amount 
of over-contracting is sufficiently great, then best-response prices can be negative 
(if market prices are allowed to be negative) or zero (if the market rules prohibit 
negative prices). I also showed that although the best-response price with some 
level of contract cover is below the best-response price with no contract cover, 
depending on the price-elasticity of the residual demand function that the firm 
faces, the quantity of electricity sold with contract cover can be significantly larger 
than that without contract cover. The price elasticity of the residual demand 
faced by a firm depends on the aggressiveness of its competitors' bids. In those 
instances when a firm faces a price-elastic residual demand, this difference in sales 
with and without contracting can be very large. If the firms faces a less price- 
elastic demand, this difference is smaller. In this sense, a firm has a greater 
incentive to sell contracts if it faces a price-elastic residual demand. 

My model of the price-setting process in NEMl which uses the actual bids 
submitted, inter-market transfers and average half-hourly market demand is able to 
replicate quite closely both the observed prices and variable profit levels actually 
achieved. Using this model of the price-setting process, I then computed best- 
response prices for Firm A and compared the profits it would achieve under these 
prices versus those obtained under their current bidding strategy. Depending on 
the assumptions made about Firm A's marginal cost of production, my predicted 
increase in profits from best-response pricing taken over all load periods in my 
sample ranged from 11 percent to 17 percent relative to their profits under current 
prices and contracting levels. 
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3 8 FRANK A. WOLAK 

I also analyzed the impact of different contracting strategies on Firm A's best- 
response prices. I found that the case of zero hedge contracts yielded 
dramatically increased average prices and profits, but significantly greater 
volatility in both prices and profits across load periods. I then considered an 
intermediate case of one-half current contracting levels and current contract prices. 
Best-response pricing with this level of contracting yielded 134% higher variable 
profits than those at current prices and contracting levels. These results are 
indicative of the increased variable profits possible from reductions in contract 
quantities. 

Using several rules of thumb to estimate the contract quantities of other major 
participants in the market, I repeated the best-response pricing profits to actual 
profits comparison and the reduced contract best-response pricing profits to 
current profits comparison. This analysis yielded similar quantitative increases 
in variable profits from best response-pricing at current contract levels to those 
obtained for Firm A. I also found variable profits increases from reduced 
contracting levels and best-response pricing relative current profit levels for these 
firms similar to those found for Firm A. Finally, I considered various strategies 
for achieving higher market prices. The results in Section 7 show that without a 
reduction in its contract quantity, a firm's best-response prices will not change. 
Consequently, its optimal bidding strategy would not change. 

These results have several implications for the design of competitive electricity 
markets. Most re-structuring processes around world have imposed a large 
quantity of vesting contracts between electricity retailers and generators on these 
two classes of market participants. These are legally binding hedge contracts at 
prices and quantities set by the government regulator. This analysis shows that if 
the vesting contract quantity is a large enough fraction of each firm's expected 
sales into the market, this can cause firms to find it optimal to bid to achieve low 
prices. Consequently, if one is concerned about the exercise of market power in a 
re-structured electricity market, then effective price regulation can be imposed by 
forcing a large enough quantity of hedge contracts on the newly privatized 
generators. It is an open question what the optimal sequence is for reducing the 
levels of these vesting contracts over time and how the prices of the these 
contracts should change as their level is reduced. 

The framework outlined here can be used to analyze a variety of issues in the 
design of competitive electricity markets. One extension currently underway is 
solution of the best-response bidding strategy given in (3) and a comparison of 
the expected profits levels that can be obtained from it to the those from best- 
response pricing and the current bidding strategy. Another extension is to 
formulate a Nash equilibrium in best-response bidding strategies in order to 
analyze the impact of changes in the constraints on bidding strategies on the 
market prices obtained. 
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