INTERNATIONAL ECONOMIC JOURNAL 1
Volume 14, Number 2, Summer 2000

AN EMPIRICAL ANALYSIS OF THE IMPACT OF HEDGE
CONTRACTS ON BIDDING BEHAVIOR IN A COMPETITIVE
ELECTRICITY MARKET*

FRANK A. WOLAK

Stanford University

A major concern in the design of wholesale electricity markets is the potential for
the exercise of market power by generating unit owners. To better understand the
determinants of generating unit owner market power and how it is exercised, this paper
derives a model of bidding behavior in a competitive electricity market which
incorporates various sources of uncertainty and the impact of the electricity generator’s
position in the financial hedge contract market on its expected profit-maximizing
bidding behavior. The model is first used to characterize the profit-maximizing market
price that a generator would like set by its bidding strategy for several hedge contract
and spot sales combinations. This model is applied to bid and contract data obtained
from the first three months of operation of the National Electricity Market (NEM1) in
Australia.  This analysis illustrates the sensitivity of expected profit-maximizing
bidding strategies to the amount of financial hedge contracts held by the generating unit
owner. It also provides strong evidence for the effectiveness of financial hedge
contracts as a means to mitigate market power during the initial stages of operation of a
wholesale electricity market. [L 94]

1. INTRODUCTION

This paper derives a model of bidding behavior in a competitive electricity
market which incorporates the impact of the electricity generator’s position in the
hedge contract market on its expected profit-maximizing bidding behavior.! The
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comments of Kuen-Kwan Ryu and Won-Cheol Yun, my discussants at the 1999 Annual
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'Hedge contracts are usually signed between a generating company and an electricity retailer.
A hedge contract guarantees the price at which a fixed quantity of electricity will be sold.
They are purely financial obligations. If the market price exceeds the contract price, then the
contract seller pays to the buyer the difference between these two prices times the contract
quantity. If the market price is less than the contract price the buyer pays the absolute value of
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model is first used to characterize the profit-maximizing market price that a
generator would like set by its bidding strategy for several hedge contract and spot
sales combinations. This model is applied to bid and contract data obtained from
the first three months of operation of the National Electricity Market (NEM1) in
Australia to answer several questions about the bidding behavior of a major
participant in this market.

Questions addressed by this analysis include: How close does this generator’s
current bidding strategy come to earning the highest profits possible given its
hedge contract position and the bidding strategies of the remaining market
participants? Are there changes in this generator’s hedge contract position that
could increase its expected profits, assuming the bidding strategies of the
remaining participants do not change? If more profitable hedge contract position
exists, why haven’t generators competing in this market moved to this more
profitable level of contracting? The answers to these questions will shed light on
the structure of optimal bidding and hedge contracting strategies in a competitive
electricity market.

A major concern of regulators and governments re-structuring their
electricity supply industries and forming competitive markets for electricity
generation is the exercise of market power. In this context, market power is
the ability of a generating company to raise the market price by its bidding
behavior and to profit from this price increase. A first step in determining
whether a generator possesses market power is an accurate model of the optimal
- bidding behavior for a generator competing in this market. Using such a model,
I show that a firm’s hedge contract position can exert a dramatic effect on its
optimal bidding strategy, and its short-term desire to raise the market price. In
fact, for sufficiently high hedge contract levels, a generator should attempt to
reduce market prices below its own marginal cost of production by its optimal
short-term bidding strategy.

These results also have implications for monitoring the exercise of market
power. Even given knowledge of a firm’s bidding behavior in a competitive
electricity market, without knowledge of a generator’s hedge contract position, it
is difficult, if not impossible, to determine if the firm is able to exercise market
power. For a specific bid function, there is often a hedge contract position that
can rationalize that bid function as expected profit-maximizing. This result
implies that the strategic value of actual bid functions to other competitors is
significantly reduced because a key ingredient necessary to determine a firm’s
profits from a given bidding strategy is unknown. Unfortunately, the monitoring
value of actual bid functions to a regulator is also significantly reduced for the
same reason.

Our empirical analysis of the bidding behavior of one of the major participants
in NEM1 helps to explain several features of the pattern of prices in this market.

this same price difference times the contract quantity to the seller.
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Specifically, since this market was formed, prices have fallen precipitously.
Before re-structuring the average price of a megawatt-hour (MWH) of electricity
was roughly 35 Australian dollars ($AU). With the formation of separate
markets in the states of New South Wales and Victoria, prices in each market
settled at an average value of roughly 25 SAU/MWH. With the interconnection
of these two markets and the formation of NEM1 in May of 1997, average prices
in the integrated market fell even further to around 15 SAU/MWH. My analysis
finds that despite the fact that the marginal cost of generation for many of the large
fossil fuel generating facilities is roughly 15 $SAU/MWH, because of the large
quantity of hedge contracts held by the major firms competing in this market, the
short-run (conditional on their current hedge contract prices and quantities) profit-
maximizing market price for these generators is very close to the actual market
price set. Using my model of optimal bidding behavior, I then provide a
rationale for why generators competing in this market sold hedge contracts in such
large quantities that these low-prices became short-run optimal. [ then present
two counterfactual scenarios which show that reductions in the generator’s
contract position can significantly increase both the mean and standard deviation
of the variable profits it earns from a profit-maximizing bidding strategy based a
reduced quantity of hedge contracts.

The remainder of the paper proceeds as follows. The next section presents
my model of optimal bidding behavior with hedge contracts for a generic
competitive electricity market. In this section, I define a best-response bidding
strategy as the set of daily bid prices and quantities that maximize expected daily
variable profits given the strategies of other firms participating in the market. I
also define the best-response price as the market-clearing price that maximizes the
realized profits of the firm given the bidding strategies of its competitors, the
realized value of the stochastic shock to the price-setting process, and its current
hedge contract position. Section 3 then presents a graphical analysis of several
scenarios which illustrate the relationship between the best-response price for a
firm and the quantity of hedge contracts sold by the firm relative to its sales into
the electricity spot market. Given this model of bidding behavior, Section 4
provides background on the market structure, market rules and regulatory
oversight in NEM1 and describes the data necessary to implement this model
empirically. Section 5 provides evidence for the validity of my model of the
price-setting process in NEM1. Section 6 uses the results of Section 5 to derive
best-response prices for a major firm participating in this market. Section 7 uses
the results of the previous sections to explain the current pattern of prices in this
market. This section also discusses the rationale for the high levels of hedge
contracts in this market. The final section describes my related research in
progress and the implication of these results for the design of competitive
electricity markets.
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2. AMODEL OF BEST-RESPONSE BIDDING
AND BEST-RESPONSE PRICING

A competitive electricity market is an extremely complicated non-cooperative
game with a very high-dimensional strategy space. A firm owning a single
generating set competing in a market with half-hourly prices must, at a minimum,
decide how to set the daily price for the unit and the quantity bid for 48 half-hours
during the day’ In all existing electricity markets firms have much more
flexibility in how they bid their generating facilities. For instance, in NEM1
firms are allowed to bid daily prices and half-hourly quantities for 10 bid
increments per generating set (genset). For a single genset, this amounts to a
490-dimensional strategy space (10 prices and 480 half-hourly quantities). Bid
prices can range from -9999.99 $AU to 5000.00 $AU, which is the maximum
possible market price. Each of the quantity increments must be greater than or
equal to zero and their sum is less than or equal to the capacity of the generating
set. Most of the participants in this market own multiple gensets, so the
dimension of the strategy space for these firms is even larger.

A generator’s optimal bidding strategy will depend on the bidding strategies of
all of its competitors. [ assume that a firm selects its bidding strategy conditional
on the strategies selected by its competitors to maximize its expected profits for
the day. In the terminology of game theory, each generator would like to play its
best response to its competitors’ strategies for that day, given its costs of
generation and hedge contract portfolio. If the strategies played by all
participants satisfy this condition, then each strategy is that firm’s Nash
Equilibrium strategy.

Let S(i) represent the daily bidding strategy of firm /, in the present context the
set of 10 daily prices and half-hourly capacity bids for each generation set that
firm i owns. Let z[(S({), S(2), ..., S(K))] equal the expected daily profit of firm 7
when there are K firms competing in the market and they bid according to the
strategies S(7), S(2), ..., S(K), respectively. The firm maximizes expected daily
profits because there is uncertainty in the price-setting process that is unknown at
the time each firm selects its bidding strategy for the following day. The
expected profit function specifies the expected revenue received by firm i for the
day when cach firm’s bids are described by the strategies S(I), S(2), ..., S(K),
minus the expected costs of generation, taking into account any expected
revenues—positive or negative—from hedge contracts.

In order compute the expected profit function associated with any strategy the
firm might play, I must have an accurate model of the process that translates the
bids generators submit into the actual market prices they are paid for the electricity

*Electricity generating plants are usually divided into multiple generating sets or units. For
example a 2 gigawatt (GW) plant will usually be divided into four 500 megawatt (MW)
generating sets.
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for all possible realizations of uncertainty about the price-setting process. The
construction of a model of the price-setting process in NEM1 that is able to
replicate actual market prices with reasonable accuracy is a necessary first step to
compute best-response bidding strategies or perform any comparative analysis of
the expected profitability of alternative bidding strategies. Without the ability to
replicate actual market prices using actual generator bid functions, it is impossible
to compare with any degree of confidence market outcomes under current or
historical bidding strategies with what they would be under any alternative bidding
strategies. A major part of the empirical half of the paper is devoted to
demonstrating that my model of the price-setting process accurately reflects the
actual price-setting process.

Given an expression for #[(S(7), S(2), ..., S(K))], firm i’s expected profit
function for all possible strategies played by all firms, a strategy which maximize
firm i’s expected profits given the strategies played by its competitors, or best-
response strategies, can be represented as the solution to the following
optimization problem:

max 7,(S(7), S(-i)) (1)
(1)

where S(-i) = (S(1), S(2), ..., S(i-1), S(i+1), ..., S(K)) is the vector of strategies of
all other firms. Computing firm #’s best-response strategy involves maximizing
[S(), S(-1)] with respect to all of the daily prices and half-hourly availability
declarations for all generating units owned by firm i.

In NEMI, each day d is divided into the half-hour load periods i beginning
with 4:00 am to 4:30 am and ending with 3:30 am to 4:00 am the following day.
Let Firm A denote the generator whose bidding strategy is being computed.
Define

Q.  : Total market demand in load period i of day d

SO,p): Amount of capacity bid by all other firms besides Firm A into the market
in load period 7 of day d as a function of market price p

DR,(p) = Q,; - SO Ap): Residual demand faced by Firm A in load period i of day
d, specifying the demand faced by Firm A as a function of the market price p

0C,, :Contract quantity for load period i of day d for Firm A

PC,; : Quantity-weighted average (over all hedge contracts signed for that load
period and day) contract price for load period i of day d for Firm A.

7mAp) : Variable profits to Firm A at price p, in load period i of day d

MC  : Marginal cost of producing a MWH by Firm A

S4,4{p) : Bid function of Firm A for load period i of day d giving the amount it is
willing to supply as a function of the price p
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The market clearing price p is determined by solving for the smallest price
such that the equation S4,(p) = DR, (p) holds. The magnitudes OC,, and PC, are
usually set far in advance of the actual day-ahead bidding process. Generators
sign hedge contracts with electricity suppliers or large consumers for a pattern of
prices throughout the day, week, or month, for an entire fiscal year. There is some
short-term activity in the hedge contract market for electricity purchasers requiring
price certainty for a larger or smaller than planned quantity of electricity a some
point during the year.

In terms of the above notation, I can define the variable profits® (profits
excluding fixed costs) to Firm A for load period 7 during the day  at price p as:

7dp) = DRi(p)p - MC) - (p - PC)QC, 2

The first term is the variable profits from selling electricity in the spot market.
The second term, if p > PC,, is the total payments made to purchasers of hedge
contracts if the pool price, p, exceeds the contract price during that half-hour. If
p < PC,, the second term is the total payments made by purchasers of hedge
contracts to Firm A.  Once the market-clearing price is determined for the period,
equation (2) can be used to compute the profits for load period 7 in day d.

Writing Firm A’s profits in this manner shows that unless its bidding strategy
can effect the market-clearing price p, Firm A’s profits are unaffected by its
bidding strategy for a given hedge contract quantity and price. The goal of Firm
A’s best-response bidding strategy will therefore be to find the daily bid function
which results in market-clearing prices that make the expectation of the sum in
equation (2) over all load periods in the day as large as possible.

To see this result more clearly, make the following extensions to the basic
model. Suppose that there are stochastic demand shocks to the price-setting
process each period, and that Firm A knows the distribution of these shocks.
This could be due to the fact that it does not exactly know how its competitors will
bid—SO(p) has a stochastic element to it—or it does not know the market demand
used in the price-setting process when it submits its bids—Q is known up to an
additive error. Let & equal this shock to Firm A’s residual demand function in
load period i (i = 1,...,48). Re-write Firm A’s residual demand in load period i
accounting for this demand shock as DR,(p, &). Define

O=Dieees Pro Gr.1rG 105 D210 G2050 -0 Gas o4 48,5K)

3For the remainder of the paper, I use variable profits and profits interchangeably with the
understanding that T am always referring to variable profits.
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as the vector of daily bid prices and quantities submitted by Firm A. The rules of
the NEM1 market require that a single price, p,, is set for each of the k=1,..., /<K bid
increments owned by firm A for the entire day. There are K increments for each of
the J gensets owned by firm A. However, the quantity, ¢, made available to
produce electricity in load period i from each of the k=/,...,/*K bid increments
can vary across the 48 load periods throughout the day. In NEM1, the value of K
is 10, so the dimension of ® is 10J + 48x10J. Firm A owns a number of gensets
so the dimension of @ is more than several thousand. Let S4,(p, ®) equal Firm
A’s bid function in load period i as parameterized by ®. Note that by the rules of
the market, bid increments are dispatched based on the order of their bid prices,
from lowest to highest. This means that S4(p, ®) must be non-decreasing in p.

Let p(g, ©®), denote the market-clearing price for load period i given the
residual demand shock realization, &, and daily bid vector ®. It is defined as the
solution in p to the equation DR(p, &) = SA(p,®). Let fle) denote the
probability density function of &= (&, &,..., &) Firm A’s best-reply bidding
strategy is the solution to the following optimization problem:

8

[DR(,(¢;, @))(p, (e, ©))-MC)(p,(¢;. ©)-PCHQC; |f (e)de,...de,s
=/

3)

0
maxo_[
0

b

D= §

subject to b, > RO 2 b,.

Define @ as the expected profit-maximizing value of ®. Besides the extremely
large dimension of ®, there are several other reasons to expect this problem to be
extremely difficult to solve. First, in general, the residual demand function faced
by Firm A is a non-decreasing, discontinuous step function, because the aggregate
supply curve of all participants besides Firm A is a non-decreasing step function,
Second, to compute the value of the objective function requires integrating with
respect to a 48-dimensional random vector . Most important, the dimension of
® for Firm A is greater than 2,000. A 2,000 dimensional nonlinear program
exceeds the memory and computational limits of most large workstations.
Finally, several sets of linear inequality constraints represented by the matrix R
and vectors of upper and lower bounds b, and b; must be imposed on the elements
of ®. Specifically, none of the g, can be negative and the sum of the g, relevant
to a given genset cannot be greater than the capacity of the genset. The prices for
each bid increment cannot be smaller than -9999.99 $AU, or larger than 5,000.00
$AU. Although none of these problems are insurmountable, clearly this is an
extremely complicated nonlinear programming problem that will tax the capability
of even the most powerful workstation.
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At this point it is useful to compare the optimal bidding strategy problem given
in (3) to the problem of computing an optimal supply function with demand
uncertainty discussed in Klemperer and Meyer (1989) and applied to the
electricity supply industry in England and Wales by Green and Newbery (1992).
Re-write equation (2) with the residual demand function for load period i that
includes the shock for period i as:

%P, &) = DRip. &,)(p - MC) - (p - PC)QC. “4)

Solving for the value of p that maximizes (4) yields p;*(g), which is the profit-
maximizing market clearing price given that Firm A’s competitors bid to yield the
residual demand curve, DR p, &,), with demand shock realization, g, for the
hedge contract position, QC;, and PC,;. Because this price maximizes the ex post
realized profits of Firm A, for the remainder of the paper, [ will refer to it as the
best-response price for the residual demand curve DR (p, ¢,) with demand shock
realization & for the hedge contract position QC;; and PC,;. Substituting this value
of p into the residual demand curve yields DR, (p,*(&), &,). This price and
quantity combination yields Firm A the maximum profit that it can earn given the
bidding behavior of its competitors and the demand shock realization, ¢
Klemperer and Meyer (1989) impose sufficient restrictions on the underlying
economic environment—the demand function, cost functions and distribution of
demand shocks—so that by tracing out the price/quantity pair (p,*(s), DRy (p;*(&),
&,)) for all values of ¢ yields a strictly increasing supply curve, SA(p), for Firm A
for load period i. For each demand shock realization this supply curve yields the
best-response price for Firm A given the bidding strategies of Firm A’s competitors
and its hedge contract position. Green (1999) solves this supply function
equilibrium problem with contract cover for the case of linear supply functions.

Because the market rules and market structure in NEM1 constrain the feasible
set of price and quantity pairs that Firm A can bid in a given load period, it will be
unable to achieve p;*(&) for all realizations of ¢ using its allowed bidding strategy.
As noted above, the allowed bidding strategy constrains Firm A to bid ten bid
increments per genset, but more importantly, the prices of these ten bid increments
must be the same for all 48 load periods throughout the day. This can severely
limit the ability of Firm A to achieve p,*(g). Determining the types of
restrictions to put on the set feasible bidding strategies to yield the lowest possible
market prices from firms competing using strategies from these restricted strategy
sets is a important area for future research.

In the empirical half of the paper, | examine the extent to which Firm A’s
current bidding strategy falls short of the obtaining best-response pricing profits.
I find that the variable profits from best-response pricing—setting p,*(s) for
demand shock realization ¢ assuming current hedge contract prices and
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quantities—for Firm A range from 11 to 17 percent higher than the variable profits
from Firm A’s current bidding strategies, depending on the marginal cost of
generation assumed. How much of this profit difference is due to deviations
from best-response bidding by Firm A and how much is due to the constraints on
Firm A’s best-response bid functions because on the market rules governing the
price-setting process, is a topic [ am currently investigating.

Best-response prices must yield the highest expected profits, followed by best-
response bidding, because the former is based on the realization of ¢ as shown in
(4), whereas the latter depends on the distribution of ¢ as shown in (3). The
generator’s actual expected profits can only be less than or equal to the best-
response bidding expected profits. Recall that by definition, the best-response
price, p;*(s;), yields the maximum profits possible given the bidding strategies of
Firm A’s competitors and the value of the residual demand shock, &. The best-
response bidding strategy which solves (3) for the expected profit-maximizing
vector of allowable daily bid prices and quantities, ®”, yields the highest level of
expected profits for Firm A within the set of allowable bidding strategies.
Therefore, by definition, this bidding strategy should lead to higher average profits
than Firm A’s current bidding strategy for the same set of competitors’ bids and
own hedge contract positions. The extent to which profits from a best-response
bidding strategy lie below the maximum possible obtainable from best-response
prices will not be addressed here. However, given the high-dimensional strategy
space available to Firm A, it appears that a non-negligible portion of the difference
between the best-response pricing variable profits and variable profits under Firm
A’s current bidding strategy can be attributed to the use of bidding strategies that
are not best-response in the sense of not solving optimization problem (3).

The empirical half of the paper also demonstrates, using my model of the
price-setting process and bids by other generators besides Firm A, that significant
increases in Firm A’s expected variable profits are possible if it unilaterally
reduces its hedge contract position and manages to set best-response prices for its
new hedge contract position. However, the downside of this reduction in
contract quantity is a significantly more volatility across days in market prices and
variable profits. In order to provide economic intuition for this and other results
presented later, | now turn to a graphical analysis of the impact of a firm’s hedge
contract position on its best-response prices.

3. AN ECONOMIC ANALYSIS OF THE IMPACT OF CONTRACT
QUANTITY ON BEST-RESPONSE PRICES

Before proceeding with this analysis, note that I can re-write equation (4), the
realized period-level profits of Firm A, as:

ap) = (DR(p) - QO)(p - MC) + (PC - MO)OC. )
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Note that if QC is set equal to zero, then m(p) = DR(p)(p - MC). For the
remainder of the paper I will omit the subscripts on variables because my analysis
is at the load period-level unless explicitly noted. For notational ease, I also omit
& from the residual demand function despite the fact that T deal only with the
realized residual demand curve (including the realization of &) faced by Firm A
and best-response prices for the remainder of the paper.

Re-writing equation (3) in this manner isolates the impact of Firm A’s hedge
contract position on its optimal bidding behavior. Because contract prices and
quantities, PC and QC, are set well in advance of the day-ahead bidding process
and its marginal cost, MC, is known, for the purposes of Firm A’s day-ahead
bidding strategy, the second term in (5) is a fixed cost. Consequently, because its
day-ahead bidding strategy has no impact on the second term of (5), Firm A’s goal
in setting its bid prices and quantities is to maximize the first term in (5). Define
DRAp) = DR(p) - QO as the net of contract cover residual demand faced by Firm A,
recognizing that it can be both positive and negative. This means that Firm A
can sell both more or less than its contract cover. The portion of its profits that
are affected by its day-ahead bidding strategy can be written as 7%(p) = DRA(p)(p -
MC). If it has nonzero contract cover, Firm A wishes to achieve a value of p that
maximizes 7*(p) by its bidding strategy.

To allow a graphical analysis, I assume Firm A faces a linear residual demand
function for its output, so that DR(p) takes the form given in Figure 1.* The line
shifted to left parallel to DR(p) is Firm A’s residual demand less its contract cover
Oc. Associated with the both DR(p) and DRAp) = DR(p) - Q, are marginal
revenue functions, giving the increase in revenue to Firm A from selling one more
unit of output. For the case of no contract cover this line is labeled MR,.. The
line labeled MR, is the marginal revenue for contract cover level Q.. Note that
MR is a leftward shift of MRy.. From standard microeconomic theory, the profit
maximizing level of output for Firm A, given that it faces either residual demand
curve and associated marginal revenue curve in Figure 1, is to produce at the point
where that marginal revenue equals its marginal cost.

The intersection of Firm A’s marginal cost with each marginal revenue
function gives the best-response quantities with and without contract cover. Let
Syc denote the best-response quantity produced by Firm A with no contract cover.
This is the quantity at the intersection of MRy, with MC. Let S¢ - Q. denote the
value of net output (output less contract quantity) at the point where MR,
intersects MC. The two best-response prices are given on the vertical axis.
They are the prices that solve the equation DR(p) = S, for / = C and NC. The

“The mathematics underlying my analysis is unchanged by more complicated residual
demand functions allowed by the rules of the market. Recall that DR(p) = Q - SO(p). The
rules of market require SO{p) to be an increasing function and the structure of available
generating technologies implies that SO(p) increases an increasing rate, which implies DR(p)
decreases at a decreasing rate.
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best-response price with no contract cover is Py The best-response price with
contract cover is P.. Note that the best-response price with contract cover is
below the best-response price without contract cover. This is a general
phenomenon. In this case, Firm A is producing more electricity than its
contract quantity so that DRA(P-) = DR(P;) - Q¢ = S¢ - Q¢ > 0. Because
Firm A has a net long position in electricity, its profit maximizing price given
the realization of its residual demand curve is greater than its marginal cost of
generation, MC.

MC

DR(p)
>0

DR(p) - Q.

Figure 1. Best-Response Prices with Generation Greater than Contract Quantity

If Firm A sells less electricity than its contract quantity, then its best-response
price will be less than its marginal cost. To see this consider the case given in
Figure 2. The same curves are drawn as given in Figure 1. The only difference,
is that DR(p) - Q. crosses the vertical (price) axis at a value of p that is less than
Firm A’s marginal cost. This implies that at a market price equal to Firm A’s
marginal cost, the amount of output Firm A sells is less than its contract quantity.
To compute the best-response prices without contract cover in this case I proceed
in the same manner as described for Figure 1. For the case of contract cover, 1
must extend, MR, the marginal revenue curve for DR(p) = DR(p) - Q¢ past the
vertical axis to the point where it crosses Firm A’s marginal cost curve. This
gives the profit-maximizing level of net output for Firm A given its contract
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quantity Q.. The price such that S = DR(p) or S¢ - Oc = DR (p) is P, the best-
response price with contract quantity O.. As shown in the diagram, this price is
less than Firm A’s marginal cost. The intuition for this result, is that if Firm A
has a greater contract quantity than electricity sales, its realized profits are
maximized at a price less than its marginal cost. This can be seen by inspection
of equation (3). Because DRA{p) = DR(p) - Q is negative, the profit contribution
of the first term will be positive only if the market price is less than Firm A’s
marginal cost.

NC

1
'
1
'
'
'
'
'
'
'
|
'
1
T
'
:

MC
& :
S0, Sy S. -
C C NC C .
DR(p)
MR, DR(p)- Q. MRy

Figure 2. Best-Response Prices with Generation less than Contract Quantity

If Firm A becomes sufficiently over-contracted, its best-response price can
even become zero, assuming negative market prices are not possible. If the
market rules allow negative market clearing prices, then its best-response price
would be negative. To see this logic, consider Figure 3, which repeats the
curves drawn in Figure 2, but with DR(p) - O shifted further to the left. The
value of Q. relative to DR(p) is so large that the price at which DR(p) - O
crosses the vertical axis is less than negative one times Firm A’s marginal cost.
Repeating the analysis in Figure 3, yields a best-response price that is negative.
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If negative market-clearing prices are not possible, then Firm A’s best-response
price in this case would be zero. In NEMI, the generators can pay to produce
electricity in a load period, although the minimum price to consumers is zero.
If the smallest price sufficient to satisfy total system demand is negative, then
all generators producing during this half-hour pay this price to sell power into
market, but electricity suppliers and large customers purchasing electricity from
the market receive it for free. Because hedge contracts are tied to the market
price and not the price generators must pay to produce, best-response pricing for
Firm A under NEMI rules for this hedge contract scenario is a market price
equal to zero.

>

MC

B.<0

DR(p)

Figure 3. Best-Response Prices with Generation Significantly less than Contract Quantity

Given that the best-response price with contract cover is always lower than the
best-response price, one might ask why Firm A should hold any contract cover.
Clearly, the simple answer is that, Firm A always sells significantly more
electricity under the best-response price with contract cover relative to what it
sells at the best-response price without contract cover., In all of the figures S >
Syes and in many cases by a substantial amount. Consequently, in choosing its
contract quantity, Firm A should balance these two competing goals, higher
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market-clearing prices with less contract cover and higher sales with greater
contract cover. The optimal contracting strategy assuming best-response pricing
balances these two goals.

The fundamental determinant of the optimal amount of contract cover from the
perspective of maximizing variable profits from bidding into the electricity market
is the price elasticity of the residual demand that Firm A faces for its output.
Recall the definition of the residual demand given earlier: DR(p) = Q - SO(p).
The only term in DR(p) that depends on price is SO(p), the amount supplied at
price p by all other participants in the market besides Firm A. Therefore, the
slope of the residual demand is minus one times the slope of the bid function of all
other participants besides Firm A. The more aggressively these firms bid, the
greater will be the surge in additional supply from these firms for a given increase
in the market-clearing price.

The greater is the supply response from Firm A’s competitors, the more elastic
is the residual demand that Firm A faces. On the other hand, if these firms do not
bid aggressively, there is a smaller surge in supply from these firms for a given
increase in the market-clearing price. Very little supply response from Firm A’s
competitors implies a less elastic residual demand for Firm A’s output. A less
elastic demand implies a more steeply sloped residual demand function and
therefore a greater divergence between the best-response-price without contract
cover and best-response price with contract cover, and a smaller divergence
between Firm A’s production at these two prices. Conversely, a more price-
elastic residual demand function implies a smaller divergence between these two
prices and a greater divergence between Firm A’s sales with and without contract
cover.

Figure 4 illustrates a case where Firm A faces a very flat residual demand
curve for its output. The divergence between the two best-response prices is very
small, whereas Firm A sells significantly more output with contract cover than
without contract cover. A firm faced with this sort of residual demand has a
significantly greater incentive to sell contract cover for its output than a firm
facing the steeper residual demand in Figure 1. If this firm sells more hedge
contracts, then it will bid more aggressively into the electricity spot market in
order sell more electricity than its forward financial obligation. This, in turn, will
leave its competitor with a more elastic residual demand curve, which causes these
competitors to want to sell more financial hedge contracts. Consequently, the
incentives one firm has to sell financial contracts produces incentives for its
competitors to sell more financial hedge contracts. As we show later in the paper,
the amount of contract cover the firm finds optimal to sell also depends on its
preferences towards risk.

Before analyzing the empirical implications of these results for the bidding and
contracting behavior of Firm A, I provide an overview of the market structure of
NEM!1 and market rules governing its operation.




IMPACT OF HEDGE CONTRACTS

>
—

MC
>0
DRp)
MRNC
MR..
¢ DR(P) - QC

Figure 4. Divergence Between Best-Response Prices with Price Elastic Residual Demand

4. OVERVIEW OF NEM1

! The Victoria Power Exchange (VPX) is the longest running wholesale
electricity market in Australia. It was established under the Electricity Industry
(Amendment) Act of 1994 and formally began operation on July 1, 1994. The
New South Wales (NSW) SEM began operation May 10, 1996. NEMI is the
competitive electricity market established jointly by NSW and Victoria on May 4,
1997. Tt introduced unrestricted competition for generation dispatch across the
two states, i.e., the cheapest available generation, after allowing for transmission
losses and constraints, is called on regardless of where it is located, and all
wholesale energy is traded through the integrated pool. The spot price in each state
is determined with electricity flows in and between the state markets based on

competitive bids or offers received in both markets.

electricity market across Queensland, NSW, Victoria and South Australia.

The ultimate goal of this process is to establish a single interconnected

next step of this process began on December 12, 1998 when the Victoria and NSW

markets were merged into a single national market. The Australian Capital
‘ Territory (ACT) is part of the NSW pool and South Australia trades through the
Victorian pool. Queensland is not yet connected to the NSW grid, but this
interconnection is planned to be in place by 2001. A link to Tasmania is also
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under consideration.

The formation of NEM1 started the harmonization of the rules governing the
operation of the two markets in Victoria and NSW. The market structures of the
two electricity supply industries in Victoria and NSW are similar in terms of the
relative sizes of the generation firms and the mix of generation capacity by fuel
type, although the NSW industry is a little less than twice the size (as measured by
installed capacity) of the Victoria industry and the largest 3 generators in NSW
control a larger fraction of the total generation capacity in their market than the
three largest generators in Victoria control of their market.

A. Market Structure in NEM1

In 1994, restructuring and privatization of the State Electricity Commission of
Victoria (SECV) took place at the power station level®. Each power station was
formed into a separate entity to be sold. All former SECV generation capacity is
now privately owned. Buyers have come from within Australia and abroad.
For example, PowerGen, the second-largest United Kingdom generating company,
owns a 49.9% share of Yallourn Energy, along with investors from Japan and
Australia. Mission Energy, a U.S. company, owns 51% of the Loy Yang B
station. Currently there are eight generating companies competing in Victoria.
The supply and distribution sector was formed into five privatized companies
which are owned by a combination of U.S. utilities and Australian companies.

The NSW SEM has four generators competing to supply power. All
generating assets are still owned by the NSW government. There are seven
corporatized state-owned electricity distribution and supply companies serving
NSW and the Australian Capital Territory (ACT). The eventual goal is to
privatize both the generation and supply companies, but the current very low
electricity prices in NEM1 have delayed this process indefinitely.

In both Victoria and NSW, there is an accounting separation within the
distribution companies between their electricity distribution business and their
electricity supply business. All other retailers have open and non-
discriminatory access to any of the other distribution company’s wires. In NSW,
the high-voltage transmission grid remains in government hands. In Victoria,
the high-voltage transmission grid was initially owned by the government and
called PowerNet Victoria. It was subsequently sold to the New Jersey-based
US company GPU and renamed GPU-PowerNet. In NSW the transmission
company is called TransGrid. Both the state markets operating under NEM1—
SEM in NSW and VPX in Victoria-were state-owned corporatized entities
separate from the bulk transmission entities.

*Wolak (1999) provides a more detailed discussion of the operating history of the VPX and
compares its market structure, market rules and performance to the markets in England and
Wales, Norway and Sweden and New Zealand.
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Peak demand in Victoria runs approximately 7.2 GW. The maximum amount
of generating capacity that can be supplied to the market is approximately 9.5 GW.
Because of this small peak demand, and despite the divestiture of generation to the
station level, three of the largest baseload generators have sufficient generating
capacity to supply at least 20% of this peak demand. More than 80% of
generating plant is coal-fired, although some of this capacity does have fuel
switching capabilities. The remaining generating capacity is shared equally
between gas turbines and hydroelectric power. The NSW market has a peak
demand of approximately 10.7 GW and the maximum amount of generating
capacity that can be supplied to the market is approximately 14 GW. There are
two large generation companies each of which controls coal-fired capacity
sufficient to supply more than 40% of NSW peak demand. The remaining large
generator has hydroelectric, gas turbine and coal-fired plants. The Victoria peak
demand tends to occur during the summer month of January, whereas peak
demand in NSW tends to occurs in the winter month of July.

The full capability of the transmission link between the two states is nominally
1,100MW from Victoria to NSW, and 1,500MW in the opposite direction,
although this varies considerably depending on temperature and systems
conditions. If there are no constraints on the transfer between markets, then both
states see the same market price at the common reference node. If a constraint
limits the transfer capacity then prices in both markets diverge, with the importing
market having a higher price than the exporting market.

There is a large joint two-state and federal government-owned hydroelectric
participant, the Snowy Mountains Corporation, at the boarder of Victoria and
NSW that sells into both markets. It owns 3.37 GW in capacity. Although all
inter-pool energy flows are determined by competitive bids, for the first stage of
NEM1 the existing Snowy arrangements in each of the two State markets have
been retained. Snowy entitlements in the two markets receive different spot
prices most of the time even though they are physically located at the same place
on the network. To prevent possible arbitraging by the Snowy Hydro Trading
Company between the two markets, it is required to submit a bid which will be
proportioned between the markets in line with the size of the entitlements (~ 29%
into Victoria and ~71% into NSW). Trading also takes place across the
Victoria/South Australia border, with South Australia participating as a VicPool
market participant in NEM1.

The market is mandatory in the sense that generators who operate generating
units larger than 30MW must offer all electricity to be produced by those units
into the market on a day-ahead basis. Generating facilities of less than 30MW in
capacity that are embedded in the local distribution network do not need to be
centrally dispatched or trade in the market; however they may elect to do so.
Pool customers are retail suppliers and ‘contestable’ customers (large commercial
or industrial customers who have half-hourly meters installed).
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B. Market Rules in NEM1

With a few minor exceptions, NEM1 has standardized the price-setting process
across the two markets. Generators are able to bid their units into the pool in 10
price increments which cannot be changed for the entire trading day—the 24 hour
period beginning at 4 am and ending at 4 am the next day. The 10 quantity
increments for each genset can be changed on a half-hourly basis. Demanders
can also submit their willingness to reduce their demand on a half-hourly basis as
function of price according these same rules. Nevertheless, there is very little
demand side participation in the pool. A few pumped storage facilities and iron
smelter facilities demand-side bid, but these sources total less than 500 MW of
capacity across the two markets.

All electricity is traded through the pool at the market price and all generators
are paid the market price for their energy, unless it is equal zero. For the reasons
discussed earlier, generators may have to pay money to supply power during that
half-hour periods with zero prices. The ex-ante Dispatch Price determined for
each 5-minute dispatch cycle is the maximum of: (1) the highest-priced capacity
band which is targeted by the economic dispatch system and (2) the Interpool
transfer price. The spot price for the half hour is the average of the six ex-ante
dispatch prices for each 5-minute cycle of the local dispatch process. As noted
earlier if this average is negative the market price is set to zero. If demand
exceeds supply for a 5-minute interval, then the price is set equal to the Value of
Lost Load (VOLL), which is currently set equal to 5,000 SAU/MWH.

Power flows between the two state markets are determined at 5-minute
intervals, taking into account the competitive bids and offers into each of the state-
based markets. Power flows between the two markets may be constrained by
technical interconnector line limits due to such factors as thermal and power
system stability. The scheduling process takes into account these restrictions on
flows between the two markets.

C. Regulatory Oversight of NEM1

Under NEM1, the Office of the Regulator General in Victoria was responsible
oversight of the Victoria Electricity Supply Industry. It sets prices for both
transmission and distribution services, using a price cap regulation plan. In NSW
the Independent Pricing and Regulatory Tribunal oversaw the operation of the
SEM. It was charged with setting prices for transmission and distribution
services, using a price cap regulation plan. Australia Competition and Consumer
Commission regulates the state transmission grids in the integrated national
electricity market. Oversight of distribution companies remains with the two
state regulatory bodies.
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5. MODELING THE PRICE-SETTING IN THE NEM1

This section describes the results of my attempts to model the price-setting
process in NEM1 using generator bid data and market demand data that I obtained
for the period May 15, 1997 to August 24, 1997.  An accurate model of the price-
setting process is necessary to compute the profit function given in equation (5)
for Firm A for any set of bids submitted by Firm A’s competitors and level of
market demand net of transfers in the state in which Firm A operates. The day-
ahead generator bids in NEM1 consist of the following information for each
generating unit: (1) the quantity or capacity band bid (in MW) for each half-hour,
(2) available capacity in MW for each half-hour, (3) fixed loading quantity (in
MW) for each half-hour, and (4) the 10 daily price bids in Australian cents/MWH.

There are nine quantity band bids which determine the nine quantity bid
increments. The last, and most often, tenth half-hourly quantity band is determined
by CAPIMM, the maximum amount of capacity available from the facility during
that half-hour. Demand-side bids have a similar structure except that bidders
tend not to use all 10 bid increments.®

The nine quantity bids and the CAPIMM quantity together with the ten price
bids can be used to determine a supply curve for each generating unit for each half
hour. Often the value of CAPIMM for a given half-hour is set to a number less
than the sum of the nine capacity bands, or is set equal to zero.” In those
instances, only those capacity bands or portions of bands less than CAPIMM are
considered in the construction of the aggregate supply curve for that half-hour. If
the dataset has a value for FIXED for a given generating facility for a given half-
hour, that generation facility is assumed to run at that capacity for the half-hour
and the FIXED capacity is subtracted from the aggregate demand and excluded
from the aggregate supply bid function used to set the predicted market price.
All of these adjustments to the price-setting process where verified by members of
the NEM1 staff as reflecting what is actually done in the price-setting process.

The first approach to modeling the price-setting process uses the intersection of
the half-hourly demands—net of demand-side bids, FIXED bids for all generators
for that half-hour, and transfers between the markets—with the half-hourly
aggregate supply curve to determine a predicted price of electricity for each half-
hour. The second approach to modeling the price-setting process uses the
intersection of the half-hourly supply curve with the 5-minute ahead demand
forecasts net of these same half-hourly magnitudes to compute the 5-minute ahead

°The demand-side bidders usually draw power from the system at full capacity or shut down
completely.

"Values of CAPIMM equal to zero are common. For example, treating the unit of
observation as the generating unit and day pair, roughly 20% of the observations defined in this
way have values of CAPIMM equal to zero. This percentage of values of CAPIMM equal to
zero is uniform across the 48 load periods in the day, with a minimum over all load periods of
20.8 percent zeros and a maximum of 21.6 percent zeros.
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prospective price. The six prospective 5-minute ahead prices for each half-hour
are then averaged to compute a prediction of the half-hourly price. The latter
process more closely follows the actual price-setting process, so it is hoped that
the extra computational burden would be justified by the increased accuracy in
replicating actual pool prices.

All bid prices for each generating unit are adjusted for loss factors obtained
from NEMI1 staff to convert all prices to the standard reference node for the
purposes of constructing the aggregate supply function. Demand-side bidders,
primarily pumped-storage facilities, were treated in the same manner as supply-
side bidders in the construction of the aggregate supply curve, with the only
difference being that if the market price is less than their bid price, the load will be
in service and if it is greater than the bid price, the load will not be in service.

A. Simulations: Predicted Versus Actual Prices

The first two columns of Table 1 give the sample means and standard
deviations at the load period level of the actual half-hourly pool price from the
NSW market for the period May 15, 1997 to August 24, 1997. The second two
columns give the sample means and standard deviations of the predicted prices
obtained using the intersection of the average half-hourly demands with the half-
hourly supply curves to determine the half-hourly market-clearing price. Before
comparing the results of these calculations, it is important to note that the use of
half-hourly demand to determine market-clearing prices introduces some degree of
approximation into my results relative to the actual price-setting process. This
approximation to the actual price-setting process should therefore work best in
those instances in which electricity demand of over the half-hour period is stable,
meaning that the half-hourly demand figure is representative of all of the five-
minute ahead demand figures in that half-hour period. Conversely, the load
periods when my approximation technique should work poorly are those where the
5-minute ahead demand forecasts in a half-hour period differ significantly from
one another, due to an increasing or decreasing system demand during that half-
hour. For the purposes of this table and all subsequent tables, Period 1
corresponds to the half-hour beginning at 4:00 am and Period 48 corresponds to
the half-hour beginning at 3:30 am the following day.

Comparing the mean prices in columns 1 and 3 of the Table 1, shows that my
procedure does a good job of predicting the actual half-hourly prices for most of
the load periods. The difference between the mean actual price and the mean
predicted price is almost always less than one Australian dollar. The largest this
difference ever gets is a little less than three dollars in load period 30, the period
beginning at 6:30 pm. [ expect the half-hourly average demand to be very
unrepresentative of the 5-minute ahead demands for that half-hour. This is borne
out by the extremely high standard deviation of actual prices during that period
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Means and Standard Deviations of Actual, Predicted, and Best
Response Prices Assuming MC = $15/MWH

Using Half-Hourly Demands to Set Prices for Full Sample of Bid Data

Actual Price Predicted Price Best Response Price
Period Mean Std Dev Mean Std Dev Mean Std Dev

1 $8.51 $4.11 $8.07 $4.45 $12.25 $8.80

2 $8.02 $4.09 $7.95 $4.39 $11.84 $8.27

3 $8.64 $3.77 $8.83 $4.08 $12.15 $8.57

4 $9.95 $3.03 $10.05 $3.42 $13.87 $9.07

5 $11.93 $3.14 $11.90 $2.66 $18.91 $17.01

6 $13.61 $3.70 $13.70 $3.44 $26.77 $31.59

7 $13.53 $2.73 $15.06 $5.85 $31.10 $37.06

8 $17.96 $7.93 $17.16 $7.30 $39.27 $40.51

9 $18.73 $8.26 $17.66 $7.04 $39.22 $39.88
10 $17.29 $6.53 $15.85 $5.06 $35.83 $35.72
11 $18.79 $7.38 $17.79 $6.36 $46.19 $52.08
12 $18.13 $6.97 $17.23 $6.28 $44.85 $49.87
13 $17.34 $5.62 $15.77 $4.62 $33.65 $32.83
14 $16.62 $4.68 $15.18 $3.62 $33.22 $32.41
15 $15.87 $4.71 $15.31 $4.41 $31.28 $31.79
16 $15.86 $6.00 $15.44 $4.76 $30.08 $32.78
17 $14.88 $4.35 $14.56 $4.01 $29.74 $32.35
18 $14.58 $4.08 $14.47 $3.63 $28.26 $29.84
19 $15.04 $4.52 $14.59 $3.94 $28.62 $30.20
20 $14.74 $4.42 $14.13 $3.32 $27.06 $27.75
21 $14.41 $4.10 $14.12 $3.40 $27.40 $29.06
22 $14.02 $3.33 $13.89 $3.15 $26.13 $25.79
23 $13.86 $3.27 $13.93 $3.53 $25.38 $25.31
24 $14.02 $3.45 $14.16 $3.82 $23.96 $19.32
25 $14.35 $4.14 $14.25 $4.00 $22.82 $21.23
26 $15.23 $4.91 $16.05 $6.48 $24.50 $20.78
27 $17.87 $7.21 $18.93 $8.73 $32.95 $44.71
28 $24.30 $14.70 $23.06 $16.12 $49.64 $66.47
29 $22.56 $12.60 $20.31 $11.15 $47.84 $71.78
30 $22.04 $11.84 $18.09 $6.82 $38.38 $47.83
31 $19.47 $8.06 $16.81 $5.66 $32.46 $29.36
32 $18.36 $6.47 $16.88 $5.84 $33.57 $31.94
33 $18.42 $6.37 $17.55 $5.95 $36.17 $34.33
34 $17.48 $5.72 $16.16 $5.08 $31.90 $29.55
35 $15.03 $4.29 $14.29 $3.13 $30.63 $33.29
36 $13.71 $3.20 $13.50 $2.45 $25.32 $25.97
37 $14.38 $2.91 $14.48 $3.40 $33.44 $43.48
38 $13.56 $2.27 $13.35 $1.58 $25.16 $26.51
39 $16.24 $4.69 $14.48 $3.75 $32.77 $48.17
40 $14.39 $3.58 $13.73 $2.60 $30.44 $40.75
41 $14.08 $3.40 $14.09 $3.19 $32.92 $42.41
42 $13.50 $2.59 $13.45 $1.73 $28.79 $33.00
43 $15.27 $3.71 $13.36 $1.71 $29.32 $31.06
44 $13.58 $2.91 $13.06 $2.55 $24.53 $25.25
45 $12.28 $2.63 $12.36 $2.26 $22.55 $23.71
46 $11.14 $3.31 $11.52 $2.49 $19.55 $21.05
47 $10.01 $3.85 $9.69 $4.00 $15.97 $15.45
48 $8.97 $3.95 $8.85 $4.18 $13.50 $10.02
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and those adjacent to it. My model of the price-setting process is also able to
predict the standard deviation of the actual half-hourly prices as well.
Comparing the numbers in columns two and four, I find relatively close agreement
between period-level the standard deviations of prices. These results lead me to
conclude that my model of the price-setting process which uses the average half-
hourly demands satisfactorily replicates the actual price-setting process and can be
used to perform meaningful counterfactual experiments such as my best-response
price analysis.

To see if these results could be improved upon, I used the 5-minute-ahead
demand data for the month of July 1997 in my simulation of the price-setting
process. With this data, I first compute the intersection of the aggregate supply
curve for the associated half-hour for each of the S-minute demand forecasts in
that half-hour. This gives 6 predicted 5-minute-ahead prices, which are then
averaged to compute the predicted pool price for that half hour. If the average of
the S-minute ahead predicted prices in a half-hour are negative, then this price is
set equal to zero as required by the pool rules.

Table 2 gives the sample means and standard deviations of the actual half-
hourly price and the predicted half-hourly price using the five-minute-ahead data
for a sample of 5-minute demands from July 2,1997 to July 30, 1997. The 5-
minute ahead demand data yields similar results to the half-hourly demand data,
but with larger average misses than the half-hourly demand data. There are a
variety of reasons why these price predictions differ from the actual market prices.
A one reason can be traced to how transfers between the two markets are handled
in the computation of market-clearing prices. As noted above, in both the half-
hourly demand and 5-minute ahead demand simulated price-setting processes [
assume that the half-hourly transfer capacity, TRANSF, is either added or
subtracted from the aggregate demand forecast. However, different transfers are
taking place during each 5-minute interval. Unfortunately, I am unable to obtain
access to the five-minute transfer data necessary to model the actual price-setting
process more accurately. A final reason for the difference between the two prices
is also the most difficult to deal with. Each generation owner submits a ramp rate
for each facility for each half-hour during the day giving the maximum rate at
which the amount of power supplied from that facility can charge. According to
the NEM1 rules for the price-setting process, plants constrained at their ramp rate
during a 5-minute interval cannot set the price for that 5-minute interval. This
implies that the 5-minute ahead price is not just the price at the point where
aggregate demand crosses the half-hourly aggregate supply function. In order to
know which generators to skip over because their ramp rates cannot cover the
increase in demand across a S-minute interval, I need to know the current
operating level of all generators. Although, the ramp rate for a generating unit is
given in the bid database, I do not know the amount of capacity in use at each
generating facility for each 5-minute interval. Fortunately, information on the
capacity level of each generating facility is only required for a single 5-minute period,
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Table 2. Means and Standard Deviations of Actual

and Predicted Half-Hourly Prices Using Using 5-Minute Ahead Demand

to Determine Predicted Price for Period 7/2/97 to 7/30/97
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Actual Price

Predicted Price

Period Mean Std Dev Mean Std Dev
1 $11.33 $1.11 $16.45 $27.52
2 $11.05 $1.11 $16.16 $27.33
3 $11.28 $1.01 $15.94 $24.94
4 $11.61 $1.06 $16.11 $23.91
5 $12.12 $1.06 $16.35 $21.87
6 $13.40 $3.60 $17.28 $18.36
7 $13.07 $3.28 $15.93 $12.45
8 $14.72 $5.96 $14.96 $4.85
9 $14.21 $4.71 $14.42 $4.73

10 $13.09 $2.46 $13.62 $3.14
11 $13.52 $1.36 $13.58 $1.94
12 $13.87 $2.14 $13.67 $1.88
13 $14.15 $1.75 $13.85 $2.55
14 $14.78 $2.71 $16.47 $16.62
15 $12.79 $1.43 $16.10 $16.70
16 $12.69 $1.29 $16.65 $20.38
17 $12.61 $1.51 $15.69 $16.15
18 $12.61 $2.08 $15.97 $18.36
19 $12.70 $1.93 $16.64 $21.82
20 $12.30 $1.21 $16.26 $20.45
21 $12.29 $1.20 $16.50 $21.92
22 $12.64 $2.49 $16.17 $20.47
23 $12.22 $1.22 $16.30 $21.89
24 $12.26 $1.15 $16.71 $24.41
25 $12.32 $1.13 $15.32 $18.61
26 $12.84 $1.39 $13.53 $7.66
27 $16.24 $8.06 $13.38 $4.41
28 $20.47 $13.31 $15.28 $6.57
29 $17.21 $7.97 $16.79 $13.36
30 $22.93 $18.00 $17.17 $11.37
31 $19.83 $11.78 $17.22 $11.11
32 $17.19 $7.34 $15.68 $7.27
33 $18.62 $8.15 $16.21 $7.86
34 $17.23 $7.55 $15.81 $7.11
35 $14.44 $5.79 $14.82 $7.08
36 $13.20 $4.15 $12.82 $4.04
37 $14.25 $2.97 $12.77 $2.91
38 $13.20 $2.36 $13.28 $4.65
39 $18.18 $6.44 $14.27 $6.12
40 $14.91 $4.20 $13.54 $1.98
41 $13.57 $2.14 $16.68 $18.74
42 $13.46 $1.03 $17.40 $21.99
43 $16.34 $3.35 $18.37 $23.56
44 $14.66 $2.66 $19.32 $24.80
45 $13.89 $1.77 $18.16 $24.89
46 $12.80 $1.03 $17.70 $26.06
47 $12.39 $1.01 $17.39 $27.27
48 $11.63 $0.89 $16.81 $27.38
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because once this initial level is known, all 5-minute ahead prices can be
determined relative to that point. Incorporating this information into the process
of simulating actual prices would enormously increase the computational
complexity of my problem. Given the accuracy I am able to achieve in
predicting actual prices using the half-hourly demands, [ decided this increase in
complexity was unnecessary at this time. [ therefore employ the price-setting
process which uses average half-hourly demands to perform my best-response
price analysis.

6. SIMULATIONS OF BEST-RESPONSE PRICES

This section uses the best-response pricing framework described in Section 2
and the price-setting process described in the previous section to perform various
simulations which estimate the potential profit increases possible from achieving
best-response prices relative to Firm A’s current bidding strategy. The first step
is to compute Firm A’s profits from any market-clearing price. In order to do so,
several elements of Firm A’s profit function must be specified. First, an estimate
of the marginal cost of generating a MWH is required. From my conversations
with staff at Firm A, numbers in the range of 7.5 $AU/MWH and 15 SAU/MWH
were deemed reasonable, with 15 SAU/MWH the most plausible. Second,
knowledge of contract prices and quantities for each half-hour period is necessary
to obtain an accurate estimate of the variable profits accruing to Firm A from
following any particular bidding strategy. Quantity-weighted average contract
price and quantity information for my sample period was provided by staff at Firm
A. This completes the information necessary to compute an estimate of Firm A’s
profit function for any half-hour.

A. Computing Profits under Best-Response Pricing

The first step in my analysis is to compute a baseline level of profits to
compare to my estimated profits from using best-response prices. To compute
estimates of the actual profits accruing to Firm A from its current bidding strategy,
I first set values for marginal cost, MC, and the contract prices and quantities, PC
and QC, for each load period and day in my sample. I then take the actual pool
price from the NSW market for each load period as the value of p.  For the value
of DR(p) at the actual market clearing price, I take the final pre-dispatch values for
each load period given in the bidding database (the variable DISPTG) for all Firm
A units. The first column of Table 3 gives the mean of my estimates of the actual
load period level profits for my sample period assuming that MC = 15 SAU/MWH.
These profit levels and all profit levels reported in the paper are multiplied by a
positive scalar to preserve confidentiality but also to allow all profits levels and
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Table 3. Load Period Level Profits Assuming Marginal Cost of Generation

Equals $15/MWH
Mean of Mean of Best Response Profits/  Best Response Profits/

Period Actual Profits Predicted Profits Actual Profits Predicted Profits
1 $7,693 $6,830 1.14 1.28
2 $7,782 $6,938 1.14 1.28
3 $8,291 $7,724 1.10 1.19
4 $8,587 $8,367 1.13 1.16
5 $9,305 $9.451 1.26 1.24
6 $11,059 $11,313 1.38 1.35
7 $24,542 $25,260 1.24 1.20
8 $26,972 $27,173 1.25 1.24
9 $28,052 $27,982 1.21 1.21
10 $28,010 $27,643 1.18 1.19
11 $27,693 $27.477 1.24 1.25
12 $27,501 $27,229 1.21 1.23
13 $28,558 $27,890 1.16 1.18
14 $28,250 $27,677 1.14 1.17
15 $27,843 $27.407 1.15 1.17
16 $32,750 $32,360 1.13 1.14
17 $27,9%6 $27,768 1.12 1.13
18 $26,782 $26,623 1.13 1.13
19 $26,724 $26,494 1.13 1.14
20 $26,197 $25,949 1.12 1.13
21 $25,643 $25,372 1.12 1.14
22 $25,029 $24,965 1.1 1.11
23 $24.875 $24 851 1.10 1.11
24 $25,467 $25,496 1.10 1.10
25 $27.,486 $27.471 1.08 1.08
26 $27,425 $27,613 1.09 1.08
27 $28,597 $28.978 1.12 1.11
28 $30,431 $30.183 1.16 1.17
29 $30,405 $29,788 1.14 1.16
30 $30,500 $29.511 1.11 1.14
31 $29,754 $29.027 1.10 1.13
32 $29,241 $28,650 1.12 1.14
33 $28,429 $28.066 1.15 1.17
34 $27,383 $26.895 1.15 1.17
35 $29,316 $28.761 1.18 1.21
36 $29,035 $28.765 1.10 1.11
37 $13,197 $13.099 1.40 1.41
38 $12,992 $12.640 1.26 1.29
39 $13,530 $13.000 1.32 1.38
40 $12,779 $12.483 1.36 1.39
41 $12,277 $12.070 1.43 1.46
42 $11,300 $11.071 1.44 1.47
43 $10,847 $10.225 1.38 1.46
44 $9,585 $9.341 1.35 1.39
45 $8,482 $8.310 1.39 1.42
46 $8,165 $7.833 1.29 1.34
47 $7,963 $7.356 1.20 1.29
48 $7,696 $7.010 1.15 1.26
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ratios to be comparable across tables. Only the absolute magnitude of profits is
unknown. The first column of Tables 4 and 5 gives the mean of my estimates of
the actual load period level profits for my sample period assuming that MC = 10
SAU/MWH and MC = 7.5 $AU/MWH, respectively. These numbers represent
my best guess of the mean values of load period-level variable profits given the
information at my disposal for these three values of Firm A’s marginal cost of
generation.

My simulation of the actual price-setting process for a given bid function forms
the basis of my best-response calculations. To give a flavor for what my price
predictions imply about variable profit levels relative to those computed based on
actual market prices and pre-dispatch levels, in the second column of Tables 3-5, 1
present my average load-period-level predictions of Firm A’s variable profits,
employing my price-setting process that uses the half-hourly demands. For each
load period, I solve for the smallest value of p such that S4(p) = DR(p), i.e., the
amount Firm A is willing to supply (according to its actual bids) is equal to the
residual demand that it faces for its output. Call this price p*. To compute Firm
A’s variable profits, I set p in equation (5) equal to p* and the amount supplied by
Firm A equal to DR(p*). This provides all of the information necessary to
compute an estimate of Firm A’s variable profits for my model of the price-
determination process. The means of these load-period-level predicted profits
are reported in the second column of Tables 3-5 for the marginal cost scenarios I
consider. Despite the fact that I am using the half-hourly demands in my model
of the price-setting process, I find close agreement between the actual profits and
predicted profits for all load periods across all three tables. These results provide
further support for the validity of my model of the price-setting process.

B. Computing Best-Response Prices

We now proceed to the final step of my analysis, a comparison of the profits
from best-response prices to those obtained from the actual bidding strategy.
Throughout this entire discussion I am assuming that all other firms in the market
do not change their strategies in response to a change in Firm A’s bidding strategy.
My best-response price framework can be easily expanded to deal with changes in
the bidding strategies of other firms, or uncertainty in their bidding strategies. In
addition, as noted earlier, a full-blown computation of the actual best-response
bidding strategy giving the optimal daily values of the ten bid prices for each
generating unit and ten half-hourly capacity declarations for each generating unit
will not be pursued here. Instead, the goal of my analysis is to show the
maximum potential profits obtainable from pursuit of such a strategy and to
characterize its general features. As discussed in Section 2, these maximum
potential profits from best-response prices may not be obtainable because of the
constraints placed on Firm A’s bid functions by the market rules.
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Table 4. Load Period Level Profits Assuming Marginal Cost of Generation

Equals $10/MWH

Mean of Mean of Best Response/ Best Response/

Period Actual Profits Predicted Profits Actual Profits Predicted Profits
1 $12,315 $11,778 1.06 1.10
2 $12,3693 $11,844 1.05 1.10
3 $12,964 $12,616 1.04 1.07
4 $13,594 $13,482 1.06 1.07
5 $15,227 $15,293 1.13 1.13
6 $17,624 $17,822 1.22 1.21
7 $31,509 $32,275 1.17 1.15
8 $34,444 $34,711 1.18 1.17
9 $35,857 $35,862 1.15 1.15
10 $35,894 $35,669 1.12 1.13
i1 $35.804 $35,691 1.17 1.17
12 $35,636 $35.,450 1.15 1.15
13 $36,692 $36,117 1.11 1.12
14 $36,352 $35,834 1.10 1.11
15 $35,876 $35,501 1.10 1.11
16 $40,678 $40,364 1.09 1.10
17 $35,698 $35,584 1.08 1.09
18 $34,382 $34,325 1.09 1.09
19 $34,321 $34,239 1.09 1.09
20 $33,668 $33,537 1.08 1.09
21 $33,031 $32,849 1.08 1.09
22 $32,297 $32,298 1.07 1.07
23 $32,078 $32,158 1.07 1.06
24 $32,777 $32,892 1.06 1.06
25 $34,851 $34,933 1.05 1.05
26 $35,146 $35,480 1.06 1.05
27 $36,769 $37,306 1.09 1.07
28 $38,829 $38,727 1.11 1.12
29 $38,761 $38.,256 1.10 1.11
30 $38.801 $37,915 1.07 1.10
31 $38,044 $37,415 1.07 1.09
32 $37,540 $37,052 1.08 1.09
33 $36,771 $36,492 1.11 1.11
34 $35,576 $35.172 1.10 1.11
35 $37,100 $36,619 1.13 1.15
36 $36,125 $35,935 1.07 1.07
37 $20,644 $20,677 1.24 1.24
38 $20,040 $19.724 1.16 1.18
39 $20,866 $20,435 1.19 1.22
40 $19,867 $19,593 1.22 1.23
41 $19,285 $19,101 1.26 1.27
42 $18,077 $17,833 1.26 1.27
43 $17.661 $17,091 1.21 1.25
44 $15,947 $15,679 1.19 1.21
45 $14,443 $14,262 1.20 1.22
46 $13,681 $13,329 1.15 1.18
47 $13,031 $12,604 1.09 1.13

48 $12,485 $12,043 1.06 1.10
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Table 5. Load Period Level Profits Assuming Marginal Cost of Generation
Equals $7.50/MWH

Mean of Mean of Best Response Profits/ Best Response Profits/
Period Actual Profits Predicted Profits Actual Profits Predicted Profits
1 $14,626 $14,252 1.05 1.08
2 $14,698 $14,297 1.04 1.07
3 $15,346 $15,062 1.04 1.06
4 $16,097 $16,040 1.07 1.07
5 $18,188 $18,215 1.13 1.12
6 $20,907 $21,076 1.20 1.19
7 $34,992 $35,783 1.17 1.14
8 $38,179 $38,480 1.17 1.16
9 $39,760 $39,803 1.14 1.14
10 $39,836 $39,682 1.12 1.12
11 $39,859 $39,797 1.15 1.15
12 $39,703 $39,561 1.13 1.14
13 $40,759 $40,231 1.10 1.11
14 $40,403 $39,913 1.09 1.10
15 $39,892 $39,548 1.10 1.11
16 $44.642 $44.365 1.09 1.10
17 $39,553 $39,493 1.08 1.08
18 $38,182 $38,177 1.08 1.08
19 $38,114 $38,112 1.09 1.09
20 $37,403 $37.332 1.08 1.08
21 $36,726 $36,587 1.08 1.08
22 $35,931 $35,965 1.07 1.07
23 $35,679 $35,812 1.07 1.07
24 $36,432 $36,590 1.06 1.06
25 $38,533 $38,664 1.06 1.06
26 $39,007 $39,413 1.07 1.06
27 $40,855 $41,469 1.09 1.07
28 $43,029 $42,999 1.10 1.10
29 $42,939 $42,490 1.09 1.10
30 $42,951 $42.116 1.07 1.09
31 $42,189 $41,610 1.07 1.08
32 $41,689 $41,253 1.08 1.09
33 $40,942 $40,705 1.10 1.11
34 $39,672 $39,311 1.10 1.11
35 $40,992 $40,548 1.13 1.14
36 $39,670 $39,520 1.07 1.08
37 $24,368 $24,466 1.22 1.21
38 $23,563 $23,266 1.16 1.17
39 $24,534 $24,153 1.18 1.20
40 $23,411 $23,149 1.20 1.21
41 $22.789 $22,617 1.23 124
42 $21,466 $21,215 1.23 1.25
43 $21,068 $20,524 1.19 1.22
44 $19,128 $18,848 1.17 1.19
45 $17,423 $17,239 1.18 1.19
46 $16,439 $16,078 1.13 1.16
47 $15,565 $15,229 1.08 111
48 $14,830 314,560 1.06 1.08
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I compute how much actual profits, equation (5), could be increased if Firm A
had obtained best-response prices over the sample period, taking its contract
position as given. In these calculations, I assume that Firm A’s contract quantity,
OC, and contract price, PC, cannot be changed. Other calculations with my
model reported below suggest that substantial increases in expected profits are
possible from a change in OC.

The last two columns of Table 1 contain the sample mean and standard
deviation of these optimal best-response prices at the load period level for my
sample period May 15, 1997 to August 24, 1997, assuming the marginal cost of
generation is 15 SAU/MWH. For all but load period 1, these prices are higher,
sometimes significantly so, than either the actual market prices, or the predicted
prices I calculated using Firm A’s current bidding strategy.

The next step in the analysis estimates the increased profits that could be
earned by Firm A if it were able to set these load period level best-response prices
through its bidding behavior. The third column of Table 3 gives the ratio of the
average of best-response profits to the average of actual profits for each load
period, assuming a marginal cost of generation of $15/MWH. The last column
gives the ratio of the average of best-response profits to the average of Firm A’s
predicted profits, calculated using my model of the price-determination process.
These numbers provide my best estimate of an upper bound on the increase in
profits obtainable by Firm A as a result of implementing a best-response bidding
strategy. The last two columns of Tables 4 and 5 present the same set of
calculations as those reported in Table 3 for the cases that the marginal cost of
producing electricity by Firm A is 10 $AU/MWH and 7.50 $SAU/MWH,
respectively.

Several conclusions can be drawn from the results reported in these tables.
First, for all three estimates of the marginal cost of producing electricity used, in
all load periods there appear to exist opportunities for increasing profits by
pursuing a best-response bidding strategy, relative to Firm A’s current bidding
strategy. These potential profit increases are largest for the case in which the
marginal cost of generation is $15/MWH as opposed to $10/MWH and
$7.50/MWH. The second conclusion is that there are considerable differences in
the magnitude of these potential profit increases across load periods in the day.
For example, the potential increases estimated range from as small as 4% in some
load periods to as large as 44 % in other load periods. The ratio of the sample
mean profits (over all load periods and days) from the best-response bidding
strategy to the sample mean predicted profits (over all load periods and days) from
the current bidding strategy yields a value of 1.17 for the case of the marginal cost
of generation equal to 15 $AU/MWH, 1.12 for the case of a marginal cost of
generation equal to 10 SAU/MWH and 1.11 for the case of a marginal cost of
generation equal to 7.5 SAU/MWH. That is, my initial estimates predict an
average improvement in profitability of 11% to 17% over the sample period from
following a bidding strategy which yields these best-response prices.
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Taken as a whole, these results suggest that increases in profits are available to
Firm A from achieving best-response prices, assuming no change in its contract
position. What is unknown is the extent to which Firm A can achieve these
increased profits through its actual bidding strategy. Nevertheless, this result
provides a justification for the computational effort necessary to solve for the best-
response bidding strategy.

C. Best-Response Prices and Contract Quantities

As noted above, my modeling framework can be used to explore the impact of
changes in Firm A’s contract position on its best-response prices. 1 consider two
simple cases. The first case assumes Firm A holds no contracts. The second
case assumes that it uniformly cuts its contract position to half its present level,
but maintains the same contract prices. I compute Firm A’s best-response prices
and profits under both of these scenarios. The first scenario implies that the
second two terms in equation (2) are identically equal to zero. Under this
assumption [ have computed the best-response price, p*, and the best-response
profits for a marginal cost of generation of $15/MWH. Table 6 gives the load
period level mean and standard deviations of these profit levels for my sample
period.

The first point to notice from these tables is the substantial increases in
average variable profits in most load periods relative to the average variable
profits under both the current bidding strategy with the current level of contract
cover and under best-response pricing with the current level of contract cover.
However, these mean variable profit increases are not without a downside. The
second column of Table 5 shows that very large standard deviations in variable
profits result from the no contract cover best-response prices. The presence of
nonzero contract quantities considerably reduces the variability in load period
level profits. According to my model, this is at a cost of a significant reduction
in average load period level profits. These calculations suggest that, at a
minimum, my modeling framework can be a powerful tool for determining the
relevant trade-offs in terms of the means and variances in profits from pursuing
different contracting and bidding strategies.

For comparison, Table 7 computes the average period-level profits assuming a
marginal cost of 10 SAU/MWH and current contracting levels and the average
period-level profits that could be obtained if current contract levels were set to half
their magnitude in all load periods and Firm A was then able to set best-response
prices at these contract levels. 1 also compare these profits to those that could be
obtained at current contracting levels at the best-response prices for current
contract levels. The second to the last column of this table presents the ratio of
the best-response pricing profits at half of current contract quantities over the
actual profits at current prices, quantities and contract levels. The last column
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Best Response Profits with No Contract Cover, Assuming Marginal Cost of

Table 6. Load Period Mean and Standard Deviations of

Generation Equals $15/MWH
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Period Mean of Profits Std. Dev. of Profits
1 $10,163 $6,428
2 $9,462 $6,215
3 $10,265 $7,098
4 $12,301 $8,692
5 $20,531 $15,844
6 $40,826 $51,940
7 $102,792 $192,244
8 $238,717 $384,053
9 $306,815 $445,161

10 $294,159 $414,135
11 $450,623 $515,520
12 $404,370 $477,629
13 $297,995 $381,248
14 $221,979 $298,521
15 $169,244 $245,167
16 $142,133 $211,092
17 $110,686 $183,816
18 $99,016 $158,316
19 $102,442 $165,760
20 $84,395 $142,440
21 $73,758 $109,108
22 $61,662 $89,759
23 $53,386 $74,580
24 $62,644 $105,229
25 $77,835 $161,524
26 $168,533 $258,842
27 $513,946 $529,145
28 $876,724 $678,703
29 $801,871 $654,516
30 $555,336 $563,311
31 $361,541 $454.353
32 $245,595 $352,085
33 $193,060 $292,192
34 $125,104 $198,918
35 $63,095 $100,890
36 $40,354 $56,747
37 $60,068 $83,279
38 $39,194 $46,172
39 $58,067 $63,000
40 $43,779 $45,101
41 $40,479 $37,733
42 $32,680 $28,985
43 $32,552 $27,350
44 $25,724 $22,603
45 $22,759 $18,943
46 $19,308 $13,800
47 $15,142 $10,268
48 $12,342 $8,089
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Table 7. Load Period Mean Actual, Predicted and Best Response (BR) Profits
with Current Contract Quantity (CQ), BR Profits with One-Half Current CQ,
Marginal Cost of Generation Equals $10/MWH

Mean of Mean of Mean of BR Meanof BR BR¥%CQ/ BR¥%CQ/ BR%CQ/
Actual Predicted  at Current Profits at Actual Predicted BR
Period Profits Profits CQ Profits % CQ Profits Profits Current CQ

1 $5,661 $4.900 $12,998 $9,410 1.66 1.92 0.72

2 $5,486 $4,892 $13,033 $9,082 1.66 1.86 0.70

3 $6,066 $5,778 $13,546 $9,507 1.57 1.65 0.70

4 $6,921 $6,860 $14,471 $11,244 1.62 1.64 0.78

S $8.,858 $8,877 $17,255 $18,366 2.07 2.07 1.06

6 $11,315 $11,577 $21,478 $30,115 2.66 2.60 1.40

7 $18,404 $20,079 $37,015 $41,743 2.27 2.08 1.13

8 $23,671 $23,237 $40,706 $54,044 2.28 2.33 1.33

9 $25,105 $24,283 $41,317 $59,059 2.35 2.43 1.43
10 $23,896 $22,628 $40,339 $54,884 2.30 243 1.36
11 $25,207 $24,373 $41,857 $78,604 3.12 3.23 1.88
12 $24,597 $23,770 $40,867 $67,087 2.73 2.82 1.64
13 $24,475 $22,867 $40,554 $54,796 2.24 2.40 1.35
14 $23,697 $22,214 $39,857 $51,236 2.16 2.31 1.29
15 $22,772 $22,125 $39,565 $48,941 2.15 2.21 1.24
16 $25,145 $24,638 $44,480 $47,184 1.88 1.92 1.06
17 $21,734 $21,423 $38,684 $43,262 1.99 2.02 1.12
18 $20,800 $20,687 $37,318 $41,166 1.98 1.99 1.10
19 $21,154 $20,785 $37,320 $41,494 1.96 2.00 1.11
20 $20,556 $19,996 $36,405 $39,486 1.92 1.97 1.08
21 $19,941 $19,613 $35,764 $38,793 1.95 1.98 1.08
22 $19,185 $19,092 $34,648 $36,574 1.91 1.92 1.06
23 $18,929 $19,063 $34,231 $35,858 1.89 1.88 1.05
24 $19,454 $19,652 $34,821 $36,922 1.90 1.88 1.06
25 $20,785 $20,760 $36,750 $36,724 1.77 1.77 1.00
26 $21,736 $22,631 $37,359 $41.,356 1.90 1.83 1.11
27 $24,948 $26,198 $40,026 $55,357 2.22 2.11 1.38
28 $31,382 $30,433 $43,246 $137,725 4.39 4.53 3.18
29 $29,841 $27,752 $42,610 $131,300 4.40 4.73 3.08
30 $29,562 $25,724 $41,643 $79,756 2.70 3.10 1.92
31 $27,011 $24,435 $40,601 $57,303 2.12 2.35 1.41
32 $25,800 $24,303 $40,556 $52,190 2.02 2.15 1.29
33 $25,516 $24,697 $40,647 $55,237 2.16 2.24 1.36
34 $24,019 $22,723 $39,212 $50,187 2.09 2.21 1.28
35 $22,507 $21,660 $42,078 $45,839 2.04 2.12 1.09
36 $20,699 $20,403 $38,627 $36,134 1.75 1.77 0.94
37 $13,627 $13,721 $25,543 $38,353 2.81 2.80 1.50
38 $12,562 $12,160 $23,182 $28.,775 229 2.37 1.24
39 $15,205 $13,586 $24,932 $37,505 2.47 2.76 1.50
40 $13,190 $12,458 $24,156 $33,421 2.53 2.68 1.38
41 $12,644 $12,472 $24,214 $34,303 2.71 2.75 1.42
42 $11,513 $11,261 $22,724 $30,277 2.63 2.69 1.33
43 $12,626 $10,889 $21,325 $29,802 2.36 2.74 1.40
44 $10,443 $9,870 $18,996 $24,668 2.36 2.50 1.30
45 $8,778 $8,634 $17,387 $20,488 2.33 2.37 1.18
46 $7,749 $7,643 $15,730 $16,808 2.17 2.20 1.07
47 $6,793 $6,230 $14,267 $12,947 1.91 2.08 091
48 $5,967 $5,473 $13,286 $10,529 1.76 1.92 0.79
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presents the ratio of best-response pricing profits at half of current contract
quantities over the best-response pricing profits at current contract levels.
Although the last column shows certain load periods where profits will fall
because of reduced contract quantities, the increased average profits in other load
periods more than compensate. The ratio of variable profits over all load periods
for half of current contract quantities relative to variable profits over all load
periods at current prices, quantities and contract levels is 2.34. The ratio of
variable profits over all load periods with best-response pricing and one-half
current contract levels in the numerator and variable profits over all load periods
with best-response pricing and current contract levels in the denominator is 1.35.
These results illustrate the significant potential increases in expected profits
possible from reductions in the level of contract cover. The same downside
mentioned above applies to these results as well. Period-level variable profits are
significantly more volatile when the amount of contract cover is reduced. Itisa
worthwhile empirical question to determine whether a reduced level of contract
cover combined with allowable best-response bidding would yield these same
levels of profit increases.

Although I do not have information on the hedge contract position of other
firms in the market there are several rules of thumb that can be used to estimate
the hedge contract position of other major firms in this market. One such rule is
to take the total capacity of all bids submitted below a given price as the contract
quantity and the bid-quantity weighted price at which these bids are submitted as
the contract price. I computed estimates of PC and QC for each load period for
several of the other major participants in this market for values of this price bound
at 20 SAU/MWH and 25 SAU/MWH. Using these values of PC and QC and
similar estimates of the magnitude of the marginal cost of generation, I repeated
my best-response pricing analysis. For these firms I found similar ratios of the
average of best-response pricing profits to actual profits (assuming my estimated
level of contract hedging and marginal costs of generation) to those obtained for
Firm A. This result suggests that all major participants are employing bidding
strategies which achieve close to best-response pricing profits.

7. WHY NEM1 FIRMS SELL SO MANY HEDGE CONTRACTS

Although the previous section shows that there appears to be some
opportunities for increased profits to Firm A and other major participants from
modifying the bidding strategies given their current contract positions, the
difference between their current level of profits and the best-response pricing
profits for these firms are not so large that one could claim that these firms are
bidding in an irrational manner. Nevertheless, during this period extremely low
market prices are being set, many below the presumed marginal cost of generation
of these participants. As noted above it also is an open question whether a
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feasible bidding strategy can yield significantly higher profits than Firm A’s
current strategy, given it present hedge contract prices and quantities. The
computations reported in Section 6 illustrate that reductions in the level of Firm
A’s contract cover can significantly increase the variable profits it can obtain from
setting best-response prices. Similar results were achieved for this same analysis
for the other major players in this market. However, as shown in Section 3, the
extent to which reductions in contract cover will increase best-response pricing
profits is determined by the elasticity of each firm’s residual demand. For Firm
A, this elasticity depends on the aggregate supply function of all generators
besides Firm A. Similar logic applies to all other generators in the NEMI1
market-the price elasticity of the residual demand that these generators face
determines the extent to which best-response pricing by them will yield higher
average prices from the electricity pool. The logic of the previous sections
shows that the level of contract cover held by all generators rationalizes the very
low prices since the beginning of NEM1.

From conversations with several market participants, there appears to be
general agreement among the parties involved that the current low electricity
prices in NEM1 are caused by the high levels of contract cover sold by the large
generators serving this market. For the majority of days in the sample, Firm A
sells less electricity than it has contract cover for. As Figures 2 and 3 show, the
best-response price for a generator in this position is less than its marginal cost of
production. Consequently, given the very high level of contracting of Firm A
and its major competitors, it is rational for each of these firms to bid very
aggressively into the pool in order to dispatch as much of their capacity as
possible. This bidding strategy will yield very low pool prices, which are desired
so long as the actual amount capacity dispatched is less than the firm’s contract
cover for that half-hour.

Given this set of circumstances, one question immediately arises: How did the
major generators get themselves in a situation where aggressive bidding and low
prices yield the maximum profits possible? Stated differently: Why did the
generators sign contracts for such a large fraction of their capacity? A complete
answer to this question involves some speculation, but the analysis of the previous
section can contribute to an answer. Clearly, a major factor in the decision of the
large generators to sign these contracts is excess generation capacity to serve both
the VPX and NSW SEM. Even in the absence of contract cover being held by
any participants, the large amount of capacity available to serve each state market
relative to that state’s demand in the vast majority of half-hours of the year implies
that all generators face a significant probability all of their capacity will not be
dispatched if they do not bid aggressively. If generators believe their competitors
face these sorts of incentives, then they must in the language of Section 3 perceive
themselves as facing very price-elastic residual demand functions for their output.
Under these conditions, generators will find signing a contract that fixes the price
for a certain quantity of electricity extremely attractive, so long as the contract
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price is higher than the generator’s marginal cost of producing electricity. This
follows from the analysis comparing the difference in best-response prices with a
flat residual demand curve (aggressive bidding by competitors) given in Figure 4
to the steeper residual demand curve (less aggressive bidding by competitors)
given in Figure 1.

Recall that a firm faces a virtually horizontal residual demand curve if its
competitors bid very aggressively. This desire to sign contracts is particularly
strong if the generator is risk averse, despite the fact that the expected value of the
uncertain profit stream greatly exceeds the certain income stream. For a variety
of reasons, one would expect a government-owned corporatized entity to be
significantly more risk-averse than a privately-owned company. In fact, if a
generator manages to sign contracts that exactly match the amount of electricity its
manages to sell into the pool, that generator has a certain profit stream that is
independent of the pool price of electricity. To see this result, re-write equation

(2):

mp) = DR(p)p - MC) - (p - POQOC (6)

Setting DR(p) = QC and solving for p, yields mp) = (PC — MCYQC. At the
market price that causes Firm A sell an amount equal to its contract quantity, its
profits depend only on its contract price and quantity for that load period and its
marginal cost of production. Its profits are completely insulated from
fluctuations in the market clearing price. In fact, it can be shown that the best-
response price subject to the constraint that Firm A produces its contract quantity
is equal to its marginal cost. This appears to be the contracting strategy pursued
by several major participants in this market.

This low-risk contracting and bidding strategy can have dire longer-term
consequences if very low market prices are necessary for the generator to sell all
of its contract quantity. These low prices cause purchasers of contracts to form
expectations of very low future prices, which makes it difficult for the generator
to sell future hedge contracts at prices above its marginal cost.  [If all generators
decide to pursue this strategy, the results can be even more troublesome for the
reasons discussed in Section 4. A very aggressive bidding strategy leaves a
firm’s competitors with very price-elastic residual demands. These very price
elastic residual demands, by the logic of Figure 1 and Figure 4, increase the
incentive for these other generators to sell more contract cover. Once these firms
sell more contract cover, they will have an incentive to bid more aggressively
into the electricity market, which leaves other generators with more price-elastic
residual demands. Given these more price-elastic residual demands, the above
process now repeats itself, leading to even more contracting and even lower
prices.
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The presence of excess generation capacity and risk-averse generating
companies has contributed to the current low prices in NEM1. This statement
seems to indicate that reducing the amount of excess capacity in the market can
lead to higher prices. However, this capacity reduction strategy will only work
if in response the generators to find it optimal to contract less, which in turn
causes them to bid less aggressively. This less aggressive bidding will then
lead to higher prices. Withdrawal of capacity from the market by Firm A can
have these desired effects, but the bottom line is still that for all generators’ best
reply prices to be above their marginal costs, they must sell less contract cover
than they produce in electricity. If Firm A were to reduce its capacity without
changing its contract cover, so long as this capacity reduction did not prevent it
from selling its best-response quantity in each load period, its optimal bidding
strategy would be unaffected by this reduction in capacity and market prices
should remain the same.

To understand this logic, consider the expression for the half-hourly profits
earned by Firm A as a function of the market price. As shown earlier, half-
hourly profits can be re-written as:

mp) = (DR(p) - QC)p - MC) + (PC - MC)OC. 7

The advantage of this expression for half-hourly profits is that the second term,
(PC — M(OYQC, is fixed from the perspective of the pool price setting process.
This term is the profit that the generator earns from its contracts. Note that if
the amount the generator sells to the pool at price p, DR(p), is less than the
contract cover, QC, the generator loses money on this process, unless the market
price is below the generator’s marginal cost of production. Consequently, if
the residual demand faced by Firm A does not change, meaning that if other
generators do not alter their bidding strategies, then reducing the amount of
capacity Firm A holds will have no effect on its optimal bidding strategy, so
long as Firm A is left with capacity greater than DR(p) for all feasible values of
p. Only changes in a firm’s contract quantity will cause its best-response price
to change. Therefore, any reduction in the amount of capacity bid into the
market must be accompanied by a reduction in the amount of contract cover for
this capacity reduction to have any direct effect on a firm’s optimal bidding
strategy.

How much of a reduction in contract cover is optimal depends on the risk
tolerance of the firm. The combination of less aggressive bidding by Firm A and
its competitors will lead to higher prices on average, and significantly higher
average profits but significantly higher volatility in profits. Higher profit
volatility will come about because a larger fraction of generation output will be
sold at pool prices relative to contract prices.
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A final reason for the large amount of hedge contracts held by Firm A is the
relatively large amount of vesting contracts outstanding during this time period.
Under the rules of the NSW and Victoria markets, generators in these markets
were required to sell to retail suppliers of electricity hedge contracts in sufficient
quantity to cover the forecast load of non-contestable, or captive, customers served
by these retailers. Non-contestable customers are prohibited from choosing their
retailer. They must purchase electricity from the incumbent local retailer. The
prices of these vesting contracts are set by the state government at fairly generous
levels relative to current prices in the wholesale market. Given the relatively
small number of contestable customers in the NSW and Victoria market during the
sample period, these vesting contracts were a very large fraction of the quantity of
hedge contracts held by all generating companies.

8. MARKET DESIGN IMPLICATIONS AND DIRECTIONS
FOR FUTURE RESEARCH

This analysis has yielded several results. First, a detailed analysis of the
impact of the level of contracting on a firm’s best response-prices was presented.
Here 1 found that if a firm sells less electricity than it has contract cover, then its
best-response prices are less than its marginal cost of production. If the amount
of over-contracting is sufficiently great, then best-response prices can be negative
(if market prices are allowed to be negative) or zero (if the matket rules prohibit
negative prices). I also showed that although the best-response price with some
level of contract cover is below the best-response price with no contract cover,
depending on the price-elasticity of the residual demand function that the firm
faces, the quantity of electricity sold with contract cover can be significantly larger
than that without contract cover. The price elasticity of the residual demand
faced by a firm depends on the aggressiveness of its competitors’ bids. In those
instances when a firm faces a price-elastic residual demand, this difference in sales
with and without contracting can be very large. If the firms faces a less price-
elastic demand, this difference is smaller. In this sense, a firm has a greater
incentive to sell contracts if it faces a price-elastic residual demand.

My model of the price-setting process in NEM1 which uses the actual bids
submitted, inter-market transfers and average half-hourly market demand is able to
replicate quite closely both the observed prices and variable profit levels actually
achieved. Using this model of the price-setting process, I then computed best-
response prices for Firm A and compared the profits it would achieve under these
prices versus those obtained under their current bidding strategy. Depending on
the assumptions made about Firm A’s marginal cost of production, my predicted
increase in profits from best-response pricing taken over all load periods in my
sample ranged from 11 percent to 17 percent relative to their profits under current
prices and contracting levels.
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[ also analyzed the impact of different contracting strategies on Firm A’s best-
response prices. I found that the case of zero hedge contracts yielded
dramatically increased average prices and profits, but significantly greater
volatility in both prices and profits across load periods. I then considered an
intermediate case of one-half current contracting levels and current contract prices.
Best-response pricing with this level of contracting yielded 134% higher variable
profits than those at current prices and contracting levels. These results are
indicative of the increased variable profits possible from reductions in contract
quantities.

Using several rules of thumb to estimate the contract quantities of other major
participants in the market, I repeated the best-response pricing profits to actual
profits comparison and the reduced contract best-response pricing profits to
current profits comparison. This analysis yielded similar quantitative increases
in variable profits from best response-pricing at current contract levels to those
obtained for Firm A. 1 also found variable profits increases from reduced
contracting levels and best-response pricing relative current profit levels for these
firms similar to those found for Firm A. Finally, I considered various strategies
for achieving higher market prices. The results in Section 7 show that without a
reduction in its contract quantity, a firm’s best-response prices will not change.
Consequently, its optimal bidding strategy would not change.

These results have several implications for the design of competitive electricity
markets. Most re-structuring processes around world have imposed a large
quantity of vesting contracts between electricity retailers and generators on these
two classes of market participants. These are legally binding hedge contracts at
prices and quantities set by the government regulator. This analysis shows that if
the vesting contract quantity is a large enough fraction of each firm’s expected
sales into the market, this can cause firms to find it optimal to bid to achieve low
prices. Consequently, if one is concerned about the exercise of market power in a
re-structured electricity market, then effective price regulation can be imposed by
forcing a large enough quantity of hedge contracts on the newly privatized
generators. It is an open question what the optimal sequence is for reducing the
levels of these vesting contracts over time and how the prices of the these
contracts should change as their level is reduced.

The framework outlined here can be used to analyze a variety of issues in the
design of competitive electricity markets. One extension currently underway is
solution of the best-response bidding strategy given in (3) and a comparison of
the expected profits levels that can be obtained from it to the those from best-
response pricing and the current bidding strategy. Another extension is to
formulate a Nash equilibrium in best-response bidding strategies in order to
analyze the impact of changes in the constraints on bidding strategies on the
market prices obtained.
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